
RREECC’’22001166

Actas das

XII Jornadas sobre Sistemas Reconfiguráveis

20 e 21 de junho de 2016

Departamento de Engenharias
Escola de Ciências e Tecnologia

Universidade de Trás-os-Montes e Alto Douro

Editores:
José Carlos Cardoso
João Agostinho Pavão
Arnaldo S. R. Oliveira
Jorge Casal Santos

© Copyright 2016
Autores e Editores
Todos os Direitos Reservados

O conteúdo deste volume é propriedade legal dos autores.
Cada artigo presente neste volume é propriedade legal dos respectivos autores.
Não poderá ser objecto de reprodução ou apropriação, de modo algum,
sem permissão escrita dos respectivos autores.

 José Carlos Cardoso, João Agostinho Pavão
 Universidade de Trás-os-Montes e Alto Douro – Comissão Organizadora da REC’2016

 Arnaldo S. R. Oliveira, Jorge Casal Santos
 Universidade de Aveiro – DETI / Instituto de Telecomunicações

ISBN: 978-989-704-110-5

Conteúdo

Prefácio ... v

Organização .. vi

Comité Científico .. vii

Comunicações Convidadas

Reconfigurable Computing - Architectures and High-Level Programming... 3
Markus Weinhardt

Comunicações Regulares

Sessão 1 - Segurança

Efficient Hardware Implementation of the SHA-3 Hash Function .. 7
Magnus Sundal, Ricardo Chaves

Secure external memory on embedded devices ... 13
Diogo Prata, Ricardo Chaves, Aleksandar Ilic

Sessão 2 – Processamento de Imagem

Uma Abordagem Multi-softcore Baseada em FPGA para o Algoritmo HOG 19
José A. M. de Holanda, João Manuel Paiva Cardoso, Eduardo Marques

A hardware/software codesign framework for vision-based ADAS .. 23
Leandro A. Martinez, Eduardo Marques, José A. M. Holanda

Image Fusion in FPGA Using Xilinx Design Tools ... 29
João Pereira, Rita Ribeiro, António Falcão, Tiago M. A. Santos

Sessão 3 - Controlo

Implementation and Tuning of PID Controllers Using FPAAs ... 39
Paulo Fonseca, Ramiro Barbosa

Control of a Temperature Peltier System with FPAAs .. 45
Paulo Fonseca, Ramiro Barbosa

Sessão 4 – Aplicações de Processamento de Sinal

FPGA-Based Dynamic Partial Reconfiguration application in Cognitive Radio Baseband
Processing Systems .. 55
Mário Lopes Ferreira, Amin Barahimi, João Canas Ferreira

A Wireless Biosignal Measurement System using a Zynq SoC ... 63

i

Ricardo Joaquinito, Helena Sarmento

A real-time underwater acoustic direction finder in FPGA .. 67

José Francisco Valente, José Carlos Alves

Sessão 5 - Multiprocessamento

An Implementation of MPI on FPGA for Distributed Memory Multiprocessing 73

Francisco Pires, Mário Véstias, Horácio Neto

FPGA implementation of a Multi-Processor for Cluster Analysis ... 81

José Canilho, Mário Véstias, Horácio Neto

Índice de Autores ... 89

Notas... 91

ii

Prefácio

Este volume contém as comunicações apresentadas nas XII Jornadas sobre Sistemas

Reconfiguráveis, REC 2016, que decorreram no Departamento de Engenharias da Escola de Ciência e
Tecnologias da Universidade de Trás-os-Montes e Alto Douro em 20 e 21 de junho de 2016. As
Jornadas sobre Sistemas Reconfiguráveis são o evento nacional para promover a interatividade e
cooperação entre a comunidade científica de língua portuguesa com atividade de investigação e
desenvolvimento na área dos sistemas eletrónicos reconfiguráveis.

O programa das jornadas REC 2016 contou com 12 publicações, cada uma revista por um mínimo

de 2 elementos do respetivo Comité Cientifico. Incluiu também uma comunicação convidada proferida
por Markus Weinhardt, da Osnabrück University of Applied Sciences, que gentilmente aceitou o
convite para estar presente e enriquecer o programa das jornadas com uma apresentação intitulada
“Reconfigurable Computing - Architectures and High-Level Programming”.

O programa foi dividido em 5 sessões temáticas nos domínios da segurança, processamento de

imagem, controlo, aplicações de processamento de sinal e multiprocessamento.

A organização agradece a todos os autores a disponibilidade demonstrada na submissão e revisão

dos seus trabalhos, assim como na apreciação e partilha de conhecimentos com todos os participantes
da REC 2016.

A organização agradece também aos membros do Comité Científico pela disponibilidade em rever
os trabalhos submetidos e desta forma contribuir para o seu melhoramento.

A organização destas Jornadas contou com o apoio da Universidade de Trás-os-Montes e Alto
Douro, através da sua secção GForm para o tratamento das inscrições e disponibilização de salas, e da
Presidência da ECT na motivação para esta realização.

A organização quer também prestar um agradecimento especial à organização das XI edição das
jornadas – REC 2015 – no ISEP, na pessoa do Prof. Doutor Manuel Gericota por ter fornecido uma
base de informação, que muito facilitou o nosso trabalho.

Finalmente esperamos que esta edição das Jornadas tenha ido ao encontro das espectativas dos

investigadores que nelas participaram, quer pela troca de ideias e experiências, quer pelo convívio.

José Carlos Cardoso, Universidade de Trás-os-Montes e Alto Douro
Arnaldo S. R. Oliveira, Universidade de Aveiro – DETI / Instituto de Telecomunicações
Junho 2016

iii

Comissão Organizadora

José Carlos Cardoso
Universidade de Trás-os-Montes e Alto Douro – ECT

João Agostinho Pavão
Universidade de Trás-os-Montes e Alto Douro – ECT

Arnaldo S. R. Oliveira
Universidade de Aveiro – DETI
Instituto de Telecomunicações

Contacto Geral

Organização da REC'2016
Escola de Ciências e Tecnologias
Universidade de Trás-os-Montes e Alto Douro
Quinta de Prados
5000-801 Vila Real
Portugal
Tel.: +351 259 350 000
Fax: +351 259 350 480
E-mail: rec2016@utad.pt
URL: http://rec2016.utad.pt/

iv

Comité Científico

Coordenação

José Carlos Cardoso Universidade de Trás-os-Montes e Alto Douro
João Agostinho Pavão Universidade de Trás-os-Montes e Alto Douro
Arnaldo S. R. Oliveira Universidade de Aveiro / IT

Comité de Programa

Adriano Tavares Universidade do Minho
Ana Antunes Instituto Politécnico de Setúbal
André Fidalgo Instituto Superior de Engenharia do Porto
Aniko Costa Universidade Nova de Lisboa / UNINOVA
António Esteves Universidade do Minho
António Ferrari Universidade de Aveiro / IEETA
Fernando Gonçalves Instituto Superior Técnico / INESC-ID
Gabriel Falcão Instituto de Telecomunicações
Helena Sarmento Instituto Superior Técnico / INESC-ID
Horácio Neto Instituto Superior Técnico / INESC-ID
Iouliia Skliarova Universidade de Aveiro / IEETA
João Bispo Instituto Superior Técnico / INESC-ID
João Canas Ferreira Fac. de Engenharia da Univ. do Porto / INESC Porto
João M. P. Cardoso Fac. de Engenharia da Univ. do Porto / INESC Porto
João Lima Universidade do Algarve
João Paulo Teixeira Instituto Superior Técnico / INESC-ID
Jorge Lobo Universidade de Coimbra / ISR
José Augusto Fac. de Ciências da Univ. de Lisboa / INESC-ID
José Carlos Alves Fac. de Engenharia da Univ. do Porto / INESC Porto
José C. Metrôlho Instuto Politécnico de Castelo Branco
Leonel Sousa Instituto Superior Técnico / INESC-ID
Luís Cruz Universidade de Coimbra / DEEC
Luís Gomes Universidade Nova de Lisboa / UNINOVA
Luís Nero Alves Universidade de Aveiro / IT
Manuel Gericota Instituto Superior de Engenharia do Porto
Marco Gomes Universidade de Coimbra / DEEC
Mário Véstias Instituto Superior de Engenharia de Lisboa / INESC-ID
Mário Zenha-Rela Universidade de Coimbra
Morgado Dias Universidade da Madeira
Nuno Roma Instituto Superior Técnico / INESC-ID
Orlando Moreira ST-Ericsson
Paulo Flores Instituto Superior Técnico / INESC-ID

v

Pedro Diniz Instituto Superior Técnico / INESC-ID
Ricardo Chaves Instituto Superior Técnico / INESC-ID

vi

Comunicação Convidada

Moderação: Arnaldo S. R. Oliveira
Universidade de Aveiro – DETI / Instituto de Telecomunicações

1

2

Reconfigurable Computing - Architectures and High-Level

Programming

Markus Weinhardt
Osnabrück University of Applied Sciences

mweinhardt@computer.org

Abstract

This talk gives an overview of Reconfigurable Computing with an emphasis on high-level programming

methods.

First, different options for implementing algorithms are discussed. While hardware implementions can

outperform software, the cost of hardware (i.e., design and/or production cost) is often prohibitive. Fine-grain

reconfigurable (FPGA) hardware reduces the production cost, but designing circuits with hardware-

description languages on the RT-level remains time-consuming and error-prone.

Therefore, high-level synthesis (HLS) and system-level synthesis tools are required. They claim to enable

software programmers to use FPGAs. We present advances in this area and the remaining challenges in

building "hardware compilers" for high-level (software) languages. Our own research investigated possible

solutions to further improve HLS tools, and scalable and portable implementations of streaming applications on

heterogeneous architectures.

The last part of the talk covers the role of many-core processors and Coarse-Grain Reconfigurable Arrays

(CGRAs) - as FPGA overlays or as ASICs – for improving performance and designer productivity. Common

architectures, compilers, and future developments are presented.

Author Short Bio

Markus Weinhardt is a professor for hardware/software systems at Osnabrück University of Applied Sciences,
Germany. He received his diploma and Dr.-Ing. degrees in Informatics from the University of Karlsruhe (KIT),
Germany, in 1992 and 1997, respectively. After graduation, he spent three years as postdoctoral researcher at the
Department of Computing, Imperial College, London. Before joining Osnabrück UAS, he was the Chief
Compiler Architect at PACT XPP Technologies AG in Munich, Germany.

His research interests include reconfigurable and parallel computing (focusing on FPGAs and Coarse-Grain
Reconfigurable Arrays), high-level design methods, image processing and compiler construction. Markus
Weinhardt has (co-)authored more than 30 conference papers, journal publications and book chapters and holds
several patents. He serves on the program committees of several international conferences in the area of
reconfigurable computing.

Markus Weinhardt spends the summer semester 2016 as a visiting researcher at INESC-id/IST, Lisbon, Portugal.

REC 2016 3978-989-704-110-5 © REC 2016

4 REC 2016

Sessão Regular I

Segurança

Moderação: João Canas Ferreira
Fac. de Engenharia da Univ. do Porto / INESC Porto

5

6

Efficient Hardware Implementation of the SHA-3 Hash Function

Magnus Sundal and Ricardo Chaves
INESC-ID, Instituto Superior Técnico, Universidade Lisboa

mvsundal@outlook.com, Ricardo.Chaves@inesc-id.pt

Abstract

This paper explores the existing hardware designs for the
four sub-versions of the SHA-3 hash algorithm, with the
aim of discovering potential improvements towards push-
ing the performance and efficiency further. Herein we
consider FPGA implementations, but several of the stud-
ied techniques can also be considered for ASIC designs,
with the exception of the utilization of dedicated FPGA re-
sources. From this analysis, a combination of the individ-
ual approaches of the state-of-the-art can be used to in-
crease the throughput and reduce the area requirements.
In order to better evaluate and analyze the existing state-
of-the-art, two designs were also implemented, namely a
simple unfolded and a folded design. Based on this, a clear
view is given of the limiting factors of the various existing
implementations and where future work should focus.

1. Introduction

Hash functions are an essential part of modern cryptog-
raphy in integrity and authentication applications. In 2007,
The National Institute of Security and Technology (NIST)
concluded that it was in due time to determine a successor
to the SHA-2 hash function standard [1]. This decision was
based on general life-expectancy as well as recently pub-
lished papers proving a reduction in its strength. A public
competition which was initiated in 2007 and ended in 2012
after multiple elimination rounds, determined that a sub-
set of the Keccak sponge function family was the optimal
candidate for the new standard titled SHA-3.

Efficiency is key in the implementation of cryptographic
algorithms and since 2007, various implementations in
both software [2] and hardware [3] have emerged in a range
of performances for the SHA-3 hash function, exceeding
its predecessors. Hardware co-processors such as FPGAs
and ASICs are advantageous for non-general tasks such as
in cryptography and offer high parallel processing power
compared to general purpose CPUs. Another advantage of
hardware implementations when comparing with software
is decreased accessibility, which is a great asset concerning
security. While software has a short development path it
usually runs in shared memory space on top of an operat-
ing system, ensuing much room for vulnerabilities.

The scope of this paper covers efficient hardware imple-
mentations of SHA-3 with a main focus on FPGAs. It is
imperative with a thorough understanding of the existing

literature to be able to advance in the technical field. An ar-
gument for the choice of technology has been that the ma-
jority of the state-of-the-art falls within the area of FPGA
implementations. For comparison reasons, ASIC imple-
mentations can be less convenient because of the many
variables caused by a diversity in technologies and ap-
proaches. The challenge of FPGA implementations is to
achieve a high frequency. As the size of a design increases,
the delay caused by routing can force the system clock to
operate at a much lower frequency than what is supported
by the FPGA model. A modern FPGA consists mainly
of slices containing Configurable Logic Blocks (CLBs) as
well as additional Digital Signal Processing (DSP) slices,
Block RAM (BRAM), various clock resources and input
and output ports (IOs). Slices are conventionally the main
unit for measuring the consumption of area on the FPGA,
but the utilization of the additional resources should also be
included. As with most other relevant literature, the perfor-
mance objective is optimal efficiency which is a measure
of throughput over area.

Based on thorough analysis of the existing implementa-
tions, the goal of this project is to develop a design which
is compatible with all four sub-versions of SHA-3 and to
improve the performance and efficiency of the state-of-the-
art. A makeshift design has already been implemented,
to explore the validity and divergence of the performance
of existing implementations. This analysis is herein pre-
sented towards identifying the approach and design tech-
niques that may lead to an improved SHA-3 implementa-
tion, particularly on FPGAs.

The paper is organized as follows. In Section 2, the
SHA-3 hash function and the underlying Keccak algorithm
will be briefly presented [4]. Subsequently in Section 3, the
state-of-the-art is presented and analyzed with regard to the
most relevant implementations. In Section 4, the work ac-
complished so far is displayed. Results and evaluation are
given in Section 5 and Section 6 concludes the work so far
and presents the planned future work for this project.

2. The SHA-3 Algorithm

The algorithm is a family of sponge functions called
Keccak which in turn is based on the sponge construction,
as depicted in Figure 1. The sponge construction provides
a generalized security proof and involves the iteration of an
underlying sponge function along with injecting a padded
input message with XORs and truncation of the output di-
gest. The data block in which the sponge function acts is

REC 2016 7978-989-704-110-5 © REC 2016

called the state and is divided into an outer state - where
data is both injected and extracted after processing - and
an inner state which is reset to zeros at each new message.
The functionality of the sponge therefore depends on the
length of the input message. The iteration takes place in the
two phases of the sponge, the absorbing and the squeezing
phase respectively - if the input message and the output di-
gest is larger than the outer state. Otherwise, the underlying
sponge function is only processed once.

Figure 1: The sponge construction. / CC BY 3.0
@noekeon.org

The state is presented as a 3-dimensional block for the
benefit of easy apprehension of the sponge function op-
eration, as illustrated in Figure 2. Words constituting the
padded input message fills the state lane-wise starting at
the center. The inner state is therefore located at the high-
est coordinates, i.e. from 4,4 and downwards. The size

Figure 2: The state.

of the outer state where the message is injected is conven-
tionally referred to as the block size. The size of the inner
state is the main parameter influencing the security proof
of the sub-versions of SHA-3 and the digest is roughly half
this size. There are currently four sub-versions of SHA-3
supported by NIST, as seen in Table 1. They differ in the
size-ratio between the inner state and block size, but the
total state is always 1600 bits (5x5x64).

Version Block size Inner state Digest
SHA3-224 1152 448 224
SHA3-256 1088 512 256
SHA3-384 832 768 384
SHA3-512 576 1024 512

Table 1: The four sub-versions of SHA-3.

The underlying function consists of 24 rounds of a five-

step sequence of transformations and permutations called
the round function. These are largely based on XORs, ro-
tations as well as a few NOT and AND operators:

θ -Theta (A)

B[x , z] = A[x , 0 , z] ⊕ A[x , 1 , z] ⊕ . . .
⊕ A[x , 4 , z]

C[x , z] = B[x−1, z] ⊕ B[x +1 , z−1]
D[x , y , z] = A[x , y , z] ⊕ C[x , z]

ρ-Rho (D,r)

E [x , y , z+ r (x , y)] = D[x , y , z]

π-Pi (E)

F [y , 2 x+3y , z] = E [x , y , z]

χ-Chi (F)

G[x , y , z] = F [x , y , z] ⊕
((NOT F [x +1 , y , z]) AND F [x +2 , y , z])

ι-Iota (G,RC)

H[0 , 0 , z] = G[0 , 0 , z] ⊕ RC[z]

Code 1: Pseudo-code of the five steps of the round function.

Theta provides diffusion on to two adjacent columns.
Rho permutates each lane internally by a rotation offset
given by a 5x5 matrix r. Pi permutates the lanes with
respect to each other in the x and y positions. Chi pro-
vides non-linearity, acting on each row and Iota differen-
tiates each round by XORing the center lane with round
constants. The round constants can either be generated by
a 7-bit linear-feedback-shift-registers (LFSRs) or be pre-
generated and stored as an array.

The padding of messages is such that a ’1’ bit is ap-
pended after the LSB of the last byte of the message and
finally a 0x80 is appended to the last byte of the block. The
NIST API specifies the byte-ordering as little-endian and
bit-ordering as big-endian so that the MSB of each byte is
located at the lower address.

3. State of the art

The existing hardware implementations can be grouped
into two classes: high-speed and compact designs. The for-
mer contains simple unfolded architectures with the highest
performance related with efficiency. These designs have
maximum internal data path with registers usually based
on flip flops. The latter contains the more complex de-
signs with minimal footprint. Block or distributed RAM
is usually utilized in these implementations and the width
of the internal data path is minimized. The compact de-
signs are usually more complex as they inhibit elegant in-
struction cycles and control units in the pursuit of maxi-
mum concurrency. Still, they tend to be too conservative
in their area utilization to obtain a decent throughput and

8 REC 2016

http://sponge.noekeon.org/Sponge-150.png
http://sponge.noekeon.org/Sponge-150.png

are for that reason inferior in efficiency compared to the
high-speed designs. A brief chronological introduction of
these designs are given below, starting with the high-speed
implementations.

Strömbergson [5] provided valuable feedback in 2008
during the early stages of the SHA-3 competition, review-
ing the proposed VHDL code for FPGA implementations
by the Keccak team (Bertoni et al.) [6]. Specifically, he
discovered early problems and potential improvements in
the early design which have since been corrected. Bald-
win et al. [7] compared in 2010 the round-two candidates
with a general purpose wrapper and included all four sub-
versions of Keccak. The wrapper is the only component
which separates this implementation from the previous lit-
erature and contains a hardware padding unit. A limited
32-bit input port is the bottleneck of all but the SHA3-512
version. Homsirikamol et al. [3] presented at the same time
a similar comparison of the 256 bit versions of the same
candidates and the following year, the 512 bit versions with
and without pipelining. Additionally, they explored the po-
tential for unrolled and unfolded implementations and con-
cludes that this is not relevant for Keccak. They obtain
a higher frequency than previous implementations and for
that also a higher throughput with the non-pipelined de-
sign. The pipelined implementations do not perform well
as the area increases more than the frequency. The most
critical path remains through the round function as it does
not contain any pipeline registers. Input and output buffers
are implemented with FIFOs in BRAM, thus saving slices.
The late 2010 paper by Akin et al. [8] explores internal
pipelining and with that obtains close to maximum fre-
quency on a Virtex-4 FPGA and record high throughput.
However, the area consumed is too high to achieve a good
efficiency, even with optimal FPGA frequency. Another
comparison was performed by Jararweh et al. [9] in 2012
before the end of the competition, but without any radical
new achievements. Athanasiou et al. [10] introduced in
2014 a general SHA-3 design supporting all sub-versions
and a pipeline register in the round function. They obtain a
high frequency and a relatively low consumption of slices.
Ayuzawa et al. [11] explores the utilization of DSP slices,
specifically on the pipelined design by Akin et al as well as
variations of this. They find that certain pipelined designs
benefit from utilizing the DSP slices as no delay is added
to the most critical path. The following year, Ioannou
et al. [12] presents an implementation without additional
pipeline registers, a smaller area than Athanasiou et al. but
with a comparable frequency. Additionally, they present
a pipelined 2-factor unrolled design which performs even
better with respect to efficiency than the straight-forward
design.

As with the High-speed design, the initial compact de-
sign was first suggested by Bertoni et al. with the low-
area coprocessor. Instead of processing the full width of
the state, this design has a lane-wise architecture so that
the internal data path is 64 bits. A very high latency re-
sults in a poor throughput for this design. Each round con-
tains 55 bubbles which are cycles where the state is not
accessed. Kerckhof et al. [13] compares the compact de-

sign of the five SHA-3 finalists in 2012. Their implemen-
tation of Keccak is an improvement of the low-area copro-
cessor by Bertoni et al.. The internal data path is the same,
but the state as well as intermediate values are stored in
BRAM where two lanes can be read or written each cy-
cle. The area is reduced by more than 50 % compared to
its predecessor. Jungk & Apfelbeck [14] presents a slice-
wise architecture where the state is split into 8 pieces of 8
slices, resulting in an internal data path of 200 bits and la-
tency of 200 cycles. The state is stored in distributed RAM,
which in the Virtex-5 FPGA can be read asynchronously.
The round function in this design is re-scheduled so that
the Rho and Pi steps are the last steps in all but the first and
last round. This results in 3 different rounds, but the depen-
dency problem of the permutation steps is avoided. San &
At [15] improves on the lane-wise architecture by introduc-
ing a fine-tuned instruction sequence which allows for high
concurrency along a serialized round function. The latency
is further reduced by 50 % and along with an optimal fre-
quency this implementation yields a high throughput and
efficiency compared to the other compact, folded designs.

4. Proposed implementation

None of the existing designs utilize any distinct tech-
niques for minimizing the critical path or the area,
such as have been suggested in the Keccak Implementa-
tion Overview [6], e.g. with bit-interleaving and lane-
complementing to save NOT operations. Area is simply
saved by utilizing alternative resources to slices such as
BRAM, distributed RAM and DSP slices and addition-
ally decreasing the internal data path. The latter naturally
causes an increase in latency and the area is seldom pro-
portionally decreased. On the other hand, the downside of
utilizing BRAM is the limited width of the memory blocks.
Cascading the deep memory blocks will quickly consume
a large portion of what is available on the FPGA and will
further defeat the purpose of compact cascade-able designs.

The initial task has been to explore the unfolded high-
speed designs and to examine the feasibility of matching or
surpassing the state of the art. Additionally, the reported
performances of the existing designs are diverging more
than expected for such similar implementations. It is un-
certain how much effort has been put into the existing de-
signs with respect to manually placing components on the
FPGA. This is a time consuming task, but one that can yield
good results in frequency if done properly. San & At men-
tions careful placing and routing of components and reports
close to optimal frequency of their design. It is up for dis-
cussion whether it is a reasonable approach to rely on man-
ual methods instead of the standard vendor-provided tools.
The basis for the reported performance of the individual
designs are not equal. While area consumption remains
mostly the same, synthesis results of clock frequency are
vastly different than those which are based on Place And
Route (PAR). It has therefore been interesting to person-
ally experience which performances that can be reached by
replicating the literature.

A straight-forward design was conceived with the main

REC 2016 9

Figure 3: Unrolled high-speed design for SHA3-512.

purpose of studying the achievable critical path of the
round function without internal pipeline registers. A
schematic of this design is depicted in Figure 3 and is
specifically for SHA3-512 with 9 input lanes and 8 output
lanes. BRAM FIFOs with first-word-fall-through are used
for the IO buffers and the state register is implemented in
flip-flops, thus consuming slices. The latency is kept at the
bare minimum of 24 clock cycles. The design is dependent
on a padding component signaling the start of a message
and whether or not it is a multi-block message. In that case
there is an iterated absorbing phase of the sponge construc-
tion so that the input message must be XOR’ed with the
previous outer state and the inner state remains unchanged.

Additionally, a folded design was developed based on
the design by Jungk & Apfelbeck [14] with round function
rescheduling. The internal data path is 200 bits and both
the state and the IO buffers are implemented in BRAM.
The shortening of the internal data path saves routing delay
and resources. Apart from this, everything else is similar to
the unfolded design.

5. Results and evaluation

A summary of the relevant existing implementations in-
cluding our unfolded and folded architectures are listed in
Table 2. Where the original literature has presented results
for other versions than the SHA3-512, an estimated scal-
ing has been made based on the version difference. The
latency (L) is the number of clock cycles required to finish
the processing of a complete message block for 24 rounds.

The literature differ in the expectation of messages. A
realistic scenario for hash functions is the hashing of Ether-
net packages and so messages should be expected to have
sizes larger than the block size, i.e. multi-block-messages
(MBM). For this reason, as is also pointed out by Ioannou
et al. [12], splitting up the round function with pipeline
registers should be avoided if this is to be considered. The
succeeding message will not be ready for injection before
the previous has been processed 24 rounds. The eventual
result of this is that the most critical path of the design will
be through the round function. As can be seen in Table 2,
the designs which have considered an MBM scenario are
marked with a YES and the designs with a pipelined round

function are not. Considering small messages, we imple-
mented an additional pipelined version of our unfolded de-
sign with improved frequency. It contains two additional
registers in the round function.

Based on block size, latency and PAR results of max-
imum frequency and slice consumption, the efficiency is
calculated as follows:

Throughput per slice =
Blocksize x Frequency

Latency x Slices
(1)

In non-MBM scenarios where the designs are pipelined, the
latency is naturally larger. However, the effective latency
remains the same as multiple small messages are processed
simultaneously. The efficiency formula makes it conve-
nient to pin-point the weak factor of a design. The unfolded
high-speed designs tend to have a lower working frequency
because of high routing delay which is caused by the large
data being accessed simultaneously. Still, their low latency
results in high throughput and efficiency. The following
components are required for the unfolded high-speed de-
signs:

• Msg injection - 576-1152 XORs

• Theta - 3200 XORs (1280+320+1600)

• Rho+Pi - addressing/wiring

• Chi - 1600 XORs, 1600 NOTs and 1600 ANDs

• Iota - 7 XORs

The factors which differentiate the high-speed designs are
the utilization of pipeline registers, whether I/O buffers are
included and also the FPGA family. It is therefore not a
straight forward task to directly compare them. Consid-
ering an MBM-scenario where pipeline registers should
be avoided, Ioannou et al. obtains the best performance.
For small messages, a compromise between Athanasiou
et al. and Akin et al. should yield a decent performance
as two or three well-balanced pipeline registers should be
sufficient to achieve optimal frequency. Homsirikamol et
al. lacks frequency, but utilizing the available BRAM and
First-word-Fall-Through FIFOs to save slices are an ob-
vious advantage for optimizing the total resources on the

18

Paper FPGA
(fam.)

MBM f
(MHz)

L
(Clk cycles)

A
(Slices)

BRAM
(36 Kb)

T
(Gbps)

T/A
(Gbps/slice)

Ioannou [12] V-5 YES 382 24 1581 0 9.2 5.79
Our design unfolded V-5 - 373 72 1590 16/60 8.9 5.63
Athanasiou [10]* V-5 - 389 48 1702 0 9.3 5.48
Homsirikamol [3] V-5 YES 275 24 1220 16/60 6.6 5.37
Baldwin [7] V-5 YES 189 25 1117 0 8.5 4.32
Our design unfolded V-5 YES 201 24 1247 16/60 4.8 3.85
Akin [8]* V-4 - 509 121 4356 0 11.7 2.67
Jararweh [9]* V-5 YES 271 24 2828 0 6.5 2.29
Strömbergson [5]* V-5 YES 118 25 1483 0 3.35 2.26
Akin [8]* V-4 YES 143 24 2024 0 3.29 1.62

Our design folded** V-5 YES 253 200 291 41/60 0.7 2.50
San & At [15] V-5 YES 520 1062 151 3/48 0.3 1.66
Jungk & Apfelbeck [14] V-5 YES 159 200 393 0 0.5 1.17
Kerckhof [13] V-6 YES 250 2164 144 2 0.07 0.47
Bertoni [6]* V-5 YES 265 5160 448 0 0.052 0.12

Table 2: Relevant unfolded (top) and folded (bottom) SHA3-512 implementations sorted by efficiency. *Not SHA3-512,
adjusted for comparability. **Preliminary results.

Figure 4: Efficiency formula plot with block size=576 bits,
f=300 MHz.

FPGA. The compact designs economize in slice consump-
tion, but obtain a high latency. Limiting the internal data
path too much comes with a great cost. San & Al’s and
Jungk & Apfelbeck’s designs are comparable to the worst
of the high-speed designs. With the high level of folding
in the architecture of San & Al, it seems hard to reach
any higher performance than what they report. Jungk &
Apfelbeck’s frequency does seem to have a potential for
improvement.

To illustrate the impact of increased latency, the effi-
ciency formula has been plotted in an area versus efficiency
graph for a set of latency values in Figure 4. The frequency
has been fixed to 300 MHz, as this is usually achievable
even for unfolded high-speed design. The dotted line rep-
resents roughly the top of the state-of-the-art performance
and is therefore the threshold of interest. As can be seen,
a doubling of the latency adds a tight restriction to slice
consumption for a desired efficiency.

Returning to Table 2, our non-pipelined unfolded de-

sign is closest in resemblance with that of Homsirikamol
et al.. A majority of the slices are consumed by the state
register and XOR operators. No effort has been put into
manual placement of components and there has been mini-
mal tweaking of synthesis and MAP options. The obvious
weak point is the frequency and over 80 % of the delay in
the most critical path is caused by routing through 3 levels
of logic in the round function. The folded design obtains
an expected higher frequency than the unfolded design, but
it is still lower than the performance reported by Ioannou
and Homsirikamol.

The choice of FPGA family clearly impacts the perfor-
mance, both in frequency and slice utilization. Smaller
transistor size improves routing delay and the content of
a slice differs such as how many inputs each LUT contains.
Much of the literature [12, 3, 9, 10] have compared the
varying performances between both older and more mod-
ern FPGA families. For the Virtex families, when migrat-
ing from V-4 to V-5 the frequency tend to increase between
20-40 % and the area decreases between 30-50 %. From
V-5 to V-6, the frequency increases between 10-20 % and
the area decreases between 3-30 %. The tendencies are
similar for V-7. Our designs have been implemented on
the Virtex-5 xc5vlx50t which is an average costly device
in the V-5 model-range. Table 3 presents the utilization
of the relevant resources on the FPGA for the folded and
unfolded design. The unfolded design is clearly best bal-
anced of the two and storing both the state and IO buffers
in BRAM is not a scalable solution. The folded implemen-
tation consumes too much BRAM and too little slices. An
approach which has not been much considered since the
vanilla design by Bertoni et al. is to combine the input
and output buffer. Resources can then be saved by schedul-
ing the reception of input words after transmitting the di-
gest. The block size and digest length of all sub-versions
of SHA-3 avoids overlapping. DSP slices are not utilized
in any of the two designs, but should be considered in the

REC 2016 11

Design Type Util. Avail. Ratio
Unfolded Slices 1229 7200 17 %

BRAM 16 60 26 %
DSP 0 48 0 %

Folded Slices 291 7200 4 %
BRAM 41 60 68 %
DSP 0 48 0 %

Table 3: Resource utilization for the unfolded and folded
design on a xc5vlx50t FPGA model.

case of a non-MBM scenario where the round function is
pipelined so that the most critical path is not affected. This
is further covered by Ayuzawa et al. [11]. Alternatively,
distributed RAM can be used such as in the implemen-
tation by Jungk & Apfelbeck where they utilized 25 cas-
caded 8x8 distributed RAM blocks. For the Virtex-5 FPGA
family, the ratio of slices which supports distributed RAM,
called SLICEMs, and regular SLICEL slices are between
50-60%. The downside of distributed RAM is the limited
width of the output of the LUT. With the unfolded design,
the whole block must be accessed concurrently and so only
one LUT is used for each bit. In this case the technique
provides no benefit in slice consumption as only four bits
are stored in each slice.

6. Conclusions and future work

What seem to be missing in the state-of-the-art is an im-
plementation with a proportional utilization of the available
resources that is scalable. This means that the ratios of uti-
lized versus available slices, BRAM and DSP slices on the
FPGA are balanced. It is imperative for the design to ob-
tain optimal working frequency after routing and that any
folding and increased latency is justified. For optimal ef-
ficiency, high-factor folding is not found to be an effective
solution and should only be considered where minimal area
is of priority. This is clearly illustrated in Figure 4. Apart
from this, the approaches done by most of what constitutes
the state of the art and is covered here should be considered,
but only to a relative extent.

The performance of our unfolded design is inferior to
the existing designs by Ioannou [12] and Homsirikamol
[3]. This is caused by high routing delay and is assumed
to be solved by manual placement of components. Our
folded design is not well balanced with respect to utilized
resources on the FPGA and is therefore not fully scalable.

The results presented here are by no means the final
work and serves only as a progress report. The future work
will involve the development of a fully balanced design
which also is version-flexible so that all four sub-versions
of SHA-3 are supported. As the unfolded designs are prone
to obtain a high critical path caused by routing, general
techniques for reducing this will be explored.

Acknowledgments

This work was supported by the ARTEMIS Joint Un-
dertaking under grant agreement n. 621429 and Fundação

para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013.

References

[1] National Institute of Standards and Technology. FIPS PUB
180-4 - Secure Hash Standard (SHS), 2015. http://dx.
doi.org/10.6028/NIST.FIPS.180-4.

[2] D. J. Bernstein & T. Lange. ”eBACS: ECRYPT Benchmark-
ing of Cryptographic Systems”, 2012. https://bench.
cr.yp.to/results-sha3.html.

[3] M. Rogawski E. Homsirikamol and K. Gaj. Comparing
Hardware Performance of Round 3 SHA-3 Candidates us-
ing Multiple Hardware Architectures in Xilinx and Altera
FPGAs. Researchgate, 2011.

[4] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche and
R. V. Keer. ”Keccak sponge function family main doc-
ument ”, 2008. http://keccak.noekeon.org/
Keccak-main-1.0.pdf.

[5] J. Stromgbergson. Implementation of the Keccak Hash
Function in FPGA Devices. December 2008.

[6] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche and R.
V. Keer. ”Keccak implementation overview Version 3.2”,
2012. http://keccak.noekeon.org/.

[7] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne,
M. O’Neill and W. P. Marnane. ”FPGA Implementa-
tions of the Round Two SHA-3 Candidates”. 2010.
http://csrc.nist.gov/groups/ST/hash/
sha-3/Round2/Aug2010/documents/papers/
BALDWIN_FPGA_SHA3.pdf.

[8] O. C. Ulusel A. Akin, A. Aysu and E. Savas. Efficient Hard-
ware Implementations of High Throughput SHA-3 Can-
didates Keccak, Luffa, Blue Midnight WIsh for Single-
and Multi-Message Hashing. SINCONF, Taganrog, Russia,
pages 168–177, September 2010.

[9] H. Tawalbeh Y. Jararweh, L. Tawalbeh and A. Moh’d. Hard-
ware Performance Evaluation of SHA-3 Candidate Algo-
rithms. Journal of Information Security, pages 69–76, April
2012.

[10] G. P. Makkas G. S. Athanasiou and G. Theodoridis. High
Throughput Pipelined FPGA Implementation of the New
SHA-3 Cryptographic Hash Algorithm. IEEE, 2014.

[11] Y. Ayuzawa, N. Fujieda, and S. Ichikawa. ”Design Trade-
offs in SHA-3 Multi-Message Hashing on FPGAs”, 2014.

[12] H. E. Michail L. Ioannou and A. G. Voyiatzis. High Perfor-
mance Pipelined FPGA Implementation of the SHA-3 Hash
Algorithm. MECO, pages 1–4, 2015.

[13] N. Veyrat-Charvillon F. Regazzoni G. M. de Dormale
S. Kerckhof, F. Durvaux and F. X. Standaert. Compact
FPGA Implementations of the Five SHA-3 Finalists. Re-
searchgate, January 2011.

[14] B. Jungk and J. Apfelbeck. Area-efficient FPGA Implemen-
tations of the SHA-3 Finalists. IEEE, 2011.

[15] I. San and N. At. Compact Keccak Hardware Architecture
for Data Integrity and Authenticaion on FPGAs. Informa-
tion Security Journal: A Global Perspective, 21, pages 231–
242, August 2012.

[16] NIST. ”Approved hashing algorithms”. 2015.
http://csrc.nist.gov/groups/ST/toolkit/
secure_hashing.html.

12 REC 2016

http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://bench.cr.yp.to/results-sha3.html
https://bench.cr.yp.to/results-sha3.html
http://keccak.noekeon.org/Keccak-main-1.0.pdf
http://keccak.noekeon.org/Keccak-main-1.0.pdf
http://keccak.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

Secure external memory on embedded devices

Diogo Prata, Ricardo Chaves, and Aleksandar Ilic

INESC-ID, Instituto Superior Técnico, Universidade Lisboa

diogokmrprata@hotmail.com, Ricardo.Chaves@inesc-id.pt,

ilic@sips.inesc-id.pt

Abstract

Security always has been a main concern in the
FPGA-based systems, especially when these systems
manipulate sensitive applications and data. Since
Systems-on-Chip (SoC) are connected to an external
memory, the content of this memory can easily be
retrieved or tampered by physically probing the
memory bus. While the existing state of the art
already proposes several solutions, these are not
completely secure and impose a significant impact to
the systems performance. This paper proposes the
design of a reliable system to properly secure the
external memory of the device. The goal is to
achieve a security system with low performance
impact and low on-chip memory overhead. The
prototype is based on a Xillinx Zynq architecture.

1. Introduction

ODERN embedded systems carry more and
more sensitive information as the range of

provided services increases. During the course of
time, concerns regarding system performance and
power consumption have been taken in
consideration, however due to the increasing need of
data protection in modern systems, security has
become a leading issue. A typical embedded system
integrates a processing system and programmable
logic in a single device and an external memory. An
adversary can perform a board level attack probing
the bus between the System-on-Chip (SoC) and
external memory, observing data transfers and may
even modify or manipulate data without detection
[1].

In order to tackle this problem there are several
solutions in the literature [5] [7] which implement a
security core inside the FPGA to guarantees data
confidentiality and integrity. However, the existing
state-of-the-art implementation of such hardware
security modules impose an increased latency and
cause a significant performance loss [2], causing in

some cases high on-chip memory overheads [5] [7]
[8].

In this paper we propose a simpler and more
direct approach to encryption and protection of the
data stored on the external DDR memory. The
proposed hardware security core is placed inside the
FPGA, which is in the same SoC-area as the CPU.
By deploying high performance dedicated
cryptographic cores low performance impact is
expected. The security system is further improved
with the use of a victim cache, also implemented on
the FPGA fabric, in order to mitigate some possible
performance overheads. The memory security
system will be implemented and tested on a Zynq-
7000 SoC architecture.
The paper is organized as follows: Section 2
presents the considered threat model. The related
works are reviewed in Section III. Section IV
describes the proposed memory security system.
Section V concludes the paper.

2. Threat model

In this work we consider board-level attacks,
such as bus probing and memory tampering, while
the SoC is considered to be safe. This way an
adversary cannot access secure keys or registers
internal to the chip, by either physical or logical
attacks. The bus that interconnects the SoC to the
external memory is a fragile points of an embedded
system, since if not protected the system becomes
vulnerable to the following attacks:

- Spoofing attacks: where the adversary intends
to alter the program behaviour and place fake
data onto the memory;

- Splicing or relocation attacks: the attacker
replaces a memory block of one address by the
memory block of another address;

- Replay attacks: where the adversary records the
data flowing in the processor-memory bus and
reuses this data on the same address, replacing
new information with old information.

M

REC 2016 13978-989-704-110-5 © REC 2016

mailto:diogokmrprata@hotmail.com
mailto:Ricardo.Chaves@inesc-id.pt
mailto:ilic@sips.inesc-id.pt

3. Related Work

Execute-Only Memory (XOM) [2] proposes a

security solution that aims for a secure execution
environment. XOM architecture separates different
programs in several compartments. A compartment
is a logic container that prevents information from
circulating into or out of it. This way the programs
cannot tamper with each other. The basic approach
to implement a compartment is to tag all data with a
XOM identifier [3]. These identifiers are stored on-
chip. To guarantee data confidentiality, XOM
encrypts all instructions and data. AES 256 is the
symmetric deciphering algorithm used. In order to
prevent data tampering, the integrity mechanism
generates a message authentication code that is
concatenated with the data before the ciphering
process [4], thus avoiding spoofing attacks. The
write address is also concatenated in order detect
splicing attacks [4]. XOM [2] guarantees a high-
level security, but performance overheads can reach
50% [5]. Regarding cache management, information
added to cache presents a real overhead [4]. High
latency is another consequence of this architecture
due to the data confidentiality and data integrity
mechanisms. These two mechanisms are not done in
parallel, thus decreasing performance.

The AEGIS Project [6] proposes a physical
secure platform, incorporating platform and software
authentication mechanisms and data privacy and
integrity protection. In order to authenticate the
processor Physical Random Functions or Physical
Unclonable Functions (PUF) are used [6]. Using
PUF, each processor has a unique key. This key can
be used to authenticate the processor to the users.
AEGIS processors offer four different secure modes
to off-chip memory [6], controlled by the operating
system. Data confidentiality is achieved by the one-
time-pad (OTP) encryption scheme. AEGIS uses a
hash tree to provide an integrity checking
mechanism, where the root hash is stored on-chip.
This way on-chip memory overhead is reduced. This
memory security solution offers a high-level security
[5]. In order to increase efficiency, some hash tree
nodes are stored in cache, making the system
dependent on cache memory size and presenting
performance losses when a cache miss occurs.

Parallelize data Encryption and Integrity
Checking engine (PE-ICE) [7] proposes full
parallelization of encryption and integrity checking.
In this architecture, data confidentiality and integrity
mechanisms come from a single encryption
algorithm. This approach has the objective of
latency reduction, introduced by the cryptographic
functions, and hardware cost reduction. Data privacy

is guarantee by the AES algorithm. Tamper
resistance is reached by the association of a tag to
the plaintext. PE-ICE uses different tags for Read
Only data (RO) and Read/Write data (RW). PE-ICE
has a high on-chip memory overhead since for every
block of data it is necessary to store a tag on-chip.
This architecture also presents a high off-chip
memory overhead since it is necessary to
concatenate a tag to every block of data to be
encrypted.

Tamper-Evident Counter Tree (TEC-Tree)
proposes fully-parallelized security architecture with
low on-chip memory requirements [8]. The main
focus of this work is on protecting the integrity of
data transferred between the SoC and external
memory. As in [7], TEC-Tree concatenates tag with
the plaintext, adding integrity checking capability.
This architecture relies on a modified PE-ICE
principle in order to minimize the on-chip memory
overhead introduced by this architecture. Being a
tree structure, TEC-Tree [4] is composed of leafs
and nodes. A leaf consists of the ciphered data and
its tag, while a tree node is composed of several
concatenated tags. The goal of this architecture is to
store the least possible information on the on-chip
memory while still guaranteeing integrity checking.
For this reason the tree root is the only node that is
stored on-chip, while the rest of the tree is securely
saved in the off-chip memory.

Romain Vaslin et al. in [5] propose an hardware-
based security core. This architecture is able to
manage tree security levels: i) no security, ii)
confidentially only, and iii) confidentiality and
integrity. The hardware-security core contains a
security memory map (SMM), which stores the
security levels of memory segments and configures
the correct datapath inside the core according to the
received base address. This component is
independent of the processor and operating system.
In order to achieve confidentiality, a keystream is
generated, using an AES encryption algorithm, and
xored with the data to generate the cipher text. The
security core has a component called Integrity
Checking that evaluates data integrity using one
AES round. Integrity Checking stores a tag
composed of bits from the AES output on on-chip
memory. This component guarantees data protection
against replay and relocation attacks. This hardware-
security core has a high on-chip memory overhead.
This design was tested using an Altera NIOS II soft
processor on a Stratix II based prototyping system.

J. Crenne et al. [9] presents a lightweight
memory security approach, which is an extension of
the work proposed in [5]. In [9], the authenticated
encryption is now based on AES-GCM, which can

14 REC 2016

be pipelined and parallelized. The time stamp and
integrity checking tag are still stored on an on-chip
memory, which results in high on-chip memory
overhead.

SeCBus [10] approach presents a secure
software/hardware architecture that guarantees
confidentiality and integrity to external memory.
The cryptographic operations are implemented in a
Hardware Security Module (HSM) in the
programmable logic part of the SoC system. This
architecture allows different security levels. A
Software Security Manager (SSM) is responsible for
the dynamic management of Security Policies (SP).
The SSM is integrated with the Operating System
kernel and an application can access the SeCBus
security features through an Application
Programming Interface. When a memory access is
issued, the HSM fetches the security policy
associated with the request’s address and guarantees
defined cryptographic operations.

Zynq SoC architectures have been used to

develop cryptographic co-processors. Systems like
[11] [12] offer to the user a service that is secured
by a hardware module implemented in the
programmable logic (PL) part of the SoC chip. The
processor produces data and sends it to the PL. The
PL performs the cryptographic operations and
returns the ciphered data to the processor. The PL
works as a dedicated support processor to the
processing system (PS).

Zynq has also been used in another type of

systems like memory mapping systems and firewall
systems [13] [14] [15]. In [13], a memory tracing
tool is implemented on a Zynq board. This
implementation disconnects the CPU from memory.
When the CPU performs a read or write operation,
the request is forwarded to a general purpose (GP)
port that connects the processing system (PS) to the
programmable logic (PL). The PL accesses the
external memory, executes the read/write operation
and in case of a read, returns the data through the GP
port. The communication between the PL and the
external memory is made by a high performance
port (HP).

In [14] and [15], a Network-On-Chip Firewall

mechanism was prototyped using the Zynq
architecture. Like the previous system the CPU has
no direct access to external memory. The Firewall
module is implemented in the PL and is connected to
memory through an HP port. The PS communicates
with the PL through a GP port.

In summary, the XOM architecture offers a high-

security to external memory but has a big

performance loss, a high memory overhead and high
latency [16]. AEGIS reduced system latency with
the use of trees but still has a big performance loss
when a cache miss occurs. PE-ICE has a high on-
chip memory overhead due to the fact that it stores
all tags on-chip. TEC-Tree presents high latency
introduced by node calculation and increased off-
chip data transfers. Romain Vaslin et al. store
integrity checking tags and the time stamps on chip
which causes a high on-chip memory overhead.

4. Proposed Implementation

The proposed solution strives to create a memory
security system for external memory with low
performance impact and low on-chip memory
overhead. The system will be implemented on a
Zynq architecture using a ZedBoard platform. The
overall design is depicted in Figure 1.

Figure 1: Memory security system

As depicted in Fig.1, the security core is

implemented inside the PL. Data produced or
requested by the PS passes through the PL to be
encrypted or decrypted. The goal is deflect the direct
flow of data between the CPU and external memory.
The PL works as a security bridge between the PS
and external memory. In our proposal, the PS has no
knowledge of the existence of this bridge, thus
allowing all PS components like the memory
management unit, snoop control unit and caches to
be fully operational.

When the CPU issues a read or write request to
the external memory, the indirect addressing is
performed via the PL, instead of directly addressing
the memory. A hardware security core, inside the
PL, guarantees the cryptographic mechanisms in
order to attain two main objectives, i.e., data
confidentiality and data integrity. Data
confidentiality is guaranteed for all data inside the
external memory. Hence, when a write operation
occurs, the PS data is passed to the PL where it is
encrypted and further stored in the external memory.
For a read request, the PL is responsible for
retrieving the requested data from memory, which is

REC 2016 15

decrypted and forwarded to the PS. The
communication between the CPU and FPGA is
performed through a GP port, while the FPGA is
directly connected to memory through an HP port.

In normal conditions the CPU directly accesses
external memory through the DDR controller in the
[0-1GB[address range. In the proposed architecture
the CPU will issue read/write requests through a GP
port. The Zynq architecture has two master GP ports
associated with the [1-2GB[and [2-3GB[address
range. In order to redirect the memory access back
to the external memory address range, the security
module implemented inside the PL needs to clear the
2 most significant bits of the incoming memory
address before accessing external memory. The PL
accesses external memory via HP ports.

To experimentally evaluate the feasibility of the
proposed approach, a direct memory access
mechanism has already been implemented using the
PL, within the Zynq architecture. With this
mechanism, the PL produces and stores data on the
external memory, in an address supplied by the
CPU. The validity of these accesses was tested and
confirmed using the CPU, which directly accessed
the memory to confirm the written values.

Future work will consist in the development and
implementation of the complete system and its
evaluation, both in terms of performance but also in
terms of security. Additionally, second level victim
cache implemented on the PL fabric will also be
considered, using the existing BRAMs. This will
allow reduction of some cache misses thus reducing
the overall performance impact of the added security
components.

5. Conclusions

In this paper an initial design of a memory
security system was proposed, which is to be
developed and deployed on a Zynq architecture. In
the proposed solution, the CPU is not aware of the
existence of a memory security system, which is
implemented on the FPGA fabric. The main goal of
this work is to achieve the necessary level of
security with a low performance overhead and
reduced on-chip memory overhead.

Acknowledgements

This work was supported by the ARTEMIS Joint

Undertaking under grant agreement n. 621429 and
Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013.

References

[1] M. G. Kuhn, “Cipher Instruction Search Attack on the
Bus-Encryption Security Microcontroller DS5002FP,”
in IEEE Trans. On Comp., Oct. 1998, pp. 1153-1157.

[2] D.Lie, C. Thekkatah, and M. Horowitz,
“Implementing an untrusted operating system on
trusted hardware,” in Proc. 19th ACM Symp. Oper.
Syst. Princip., 2003, pp. 178-192.

[3] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell and M. Horowitz, "Architectural
Support for Copy and Tamper Resistant Software," in
Architectural Support for Programming Languages
and Operating Systems, 2000, pp. 168-177.

[4] R. Vaslin, “Hardware Core for Off-Chip Memory
Security Management in Embedded Systems,” Ph.D
thesis, Univ. South Brittany, Morbihan, France, 2008.

[5] R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, D.
Unnikrishnan, and K. Gaj, "Memory security
management for reconfigurable embedded systems,"
in Proceedings: Int. Conf on Field-Programmable
Technology, 2008, pp. 153-160.

[6] G.E. Suh, C. O’Donnell, and S. Devadas, “AEGIS: A
Single-Chip Secure Processor,” in IEEE Design &
Test of Computers 24(6), 2007, pp. 570–580.

[7] R. Elbaz, L. Torres, G. Sassatelli, "Added Redundancy
Explicit Authentication at the Block Level for
Parallelized Encryption and Integrity Checking on
Processor-Memory Buses", Sep 2007.

[8] R. Elbaz, D. Champagne, R.B. Lee, L. Torres, G.
Sassatelli, and P. Guillemin, “Tec-Tree allow: A low
cost and parallelized tree for efficient defense against
memory replay attacks,” in Proc. Cryptogr. Hardware
and Embedded Syst. CHES, 2007, pp. 289-302.

[9] J. Crenne, R. Vaslin, G. Gogniat, J.-P. Diguet, R.
Tessier, and D.Unnikrishnan, “Configurable Memory
Security in Embedded Systems,”, ACM Trans.
Embedded Comput. Syst., vol. 12, no. 71, Sep 2011.

[10] J. Brunel, S. Ouaarab, R. Pacalet, and G. Duc,
“SeCBus, a software/hardware architecture for
securing external memories,” in IEEE Int. Conf on
MOB Cloud Comp. Serv, and Eng, 2014, pp. 277-282.

[11] P. Svasta, A. Marghescu, T. Neacsa, “Cryptographic
Coprocessor for Data Integrity Algorithms,” in
Proceedings: Int. Spring Seminar on ELEC Tech.,
May 2014, pp. 91-94.

[12] A. Marghescu, P. Svasta, “Secure Communication
Protocol using Embedded Devices based on FPGA,”
in Electronics System-Integration Technology
Conference, 2014, pp. 1-4.

[13] L. W. Li, G. Duc, R. Pacalet, “Hardware-assisted
Memory Tracing on New Socs Embedding FPGA
Fabrics,” in Proceeding: Computer Security
Applications Conference, 2015, pp. 461-470.

[14] G. Kornaros, I. Christoforakis, and O. Tomoutzoglou,
"Hardware Support for Cost-Effective System-level
Protection in Multi-Core SoCs", in Digital System
Design, Aug 2015, pp. 41-48.

[15] M. D. Grammatikakis, P. Petrakis, A. Papagrigoriou,
G. Kornaros, and M. Coppola, “High-Level Security
Services based on a Hardware NoC Firewall Module,”
in Intel. Sol. in EMBD SYS, Oct 2015, pp. 73-78.

[16] Z. Liu, Q. Zhu, D. Li, and X. Zou, “Off-Chip
Memory Ecryption and Integrity Protection Based on
AES-GCM in Embedded Systems,” in IEEE Design &
Test, Dez 2013, pp. 54-62.

16 REC 2016

Sessão Regular II

Processamento de Imagem

Moderação: Horácio Neto
Instituto Superior Técnico / INESC-ID

17

18

Uma Abordagem Multi-softcore Baseada em FPGA para o Algoritmo HOG

José Arnaldo Mascagni de Holanda†, João Manuel Paiva Cardoso‡, Eduardo Marques§

†Instituto Federal de São Paulo, ‡Universidade do Porto, §Universidade de São Paulo,
arnaldomh@ifsp.edu.br, jmpc@fe.up.pt, emarques@icmc.usp.br

Resumo

O algoritmo Histograma da Gradientes Orientados (HOG)
é um dos mais utilizados atualmente para detecção de ob-
jetos em imagens. Seu uso para detectar eficientemente di-
ferentes classes de objetos requer variações e adaptações
facilmente providas por soluções de software. Algoritmos
desse tipo têm sido parte de sistemas embarcados inteli-
gentes de tempo real, necessitando de aplicações eficientes
que forneçam alto desempenho, baixo consumo de energia
e programabilidade que permita uma maior flexibilidade
no desenvolvimento. Nesse contexto, mostramos nosso tra-
balho para mapear o algoritmo HOG em sistemas embar-
cados, tendo em mente problemas de alto desempenho e
programabilidade. Mais especificamente, considera-se a
execução do algoritmo em um sistema baseado em FPGA
contendo múltiplos processadores softcore Nios II e tam-
bém em um processador embarcado ARM. Mostra-se como
reduzir o tempo de execução do algoritmo por transforma-
ções source-to-source e eliminação de processamento re-
dundante. Mostra-se como a utilização de pipeline de pro-
cessamento com dois processadores Nios II obtém speedup
de 47,2×.

1. Introdução

O algoritmo Histograma de Gradientes Orientados
(HOG) [1] é atualmente uma das abordagens mais utiliza-
das para a detecção de diversas classes de objetos, como
de pedestres, veículos e sinais de trânsito. No contexto de
detecção de pedestres, [2] apresentam um ranking com 44
métodos de detecção de objetos, dentre os quais 75% utili-
zam features HOG, incluindo 6 dos 10 métodos melhores
classificados. Estas estatísticas mostram a popularidade e
a efetividade deste algoritmo. Ainda, a diversidade de tra-
balhos baseados em HOG mostra que variações deste algo-
ritmo têm sido exploradas.

Diversos estudos têm como objetivo implementações
embarcadas do algoritmo HOG. Exemplos de trabalhos
recentes envolvendo implementações em FPGA incluem
[3, 4]. A maior parte dos trabalhos baseados em FPGA
para implementação do algoritmo HOG é baseada em im-
plementações fixas em hardware. Apesar de fornecer bom
desempenho, tais implementações não oferecem a flexibi-
lidade necessária, e.g., para explorar diferentes variações
algorítmicas. Outros trabalhos, tais como [5] e [6], focam
no uso de processadores soft-core próprios, capazes de ace-

lerarem o algoritmo. Estes, contudo, fornecem pouco su-
porte de ferramentas que permitam explorar suas arquitetu-
ras com software já desenvolvido.

Neste contexto, o propósito deste artigo é mostrar al-
guns aspectos da implementação do algoritmo HOG em
sistemas embarcados, representados por um sistema multi-
sofcore baseado em FPGA e um processador multi-core
ARM. Busca-se também compreender o desempenho pos-
sível atingido por um ou mais núcleos de processamento,
considerando otimizações por software, sem o uso de hard-
ware específico. Acreditamos que este seja um passo im-
portante para estabelecer limitantes superiores de desem-
penho e explorar formas de se conseguir resultados mais
flexíveis. Mais especificamente, este artigo mostra: (i) os
esforços necessários para melhorar as implementações em
software do algoritmo HOG, de forma a atingir melhor de-
sempenho em plataformas embarcadas; e (ii) uma arquite-
tura multi-core em pipeline que pode ser utilizada e custo-
mizada para aproveitar o paralelismo de pipelining no al-
goritmo HOG.

2. Descrição do Algoritmo

O método HOG [1] utiliza janelas de detecção que des-
lizam sobre a imagem de entrada extraindo descritores ba-
seados em histogramas de orientações de gradientes. Um
classificador SVM é então utilizado para determinar se o
descritor contém uma instância do objeto buscado. Cada
janela de detecção é subdividida em blocos de pixels so-
prepostos, dos quais são extraídas features que compõe o
descritor HOG. Um bloco, por sua vez, é composto por
regiões uniformemente espaçadas chamadas de células, as
quais contribuem com histogramas 1-D de orientações dos
gradientes de seus pixels. O agrupamento dos pixels em
regiões, como células e blocos, possibilita a aplicação de
filtros e normalizações locais que aumentam a eficiência da
detecção. A Figura 1 mostra os estágios utilizados para a
detecção objetos com features HOG.

Gradiente
Ângulo &

Magnitude

Voto Ponderado
& Binning

Filtro
Gaussiano

Interpolação
Bilinear

Normalização
L2-Hys

Geração de
Histograma

fx

fy

m

ϴ

v0 v1

bin0
bin1

v0g v1g

bin0
bin1

v0f v1f

bin0
bin1

v
SVM

vnorm

s

Img Correção
Gamma

Imggamma

Figura 1. Cadeia de extração de features HOG e de-
tecção de objetos.

REC 2016 19978-989-704-110-5 © REC 2016

No início na cadeia de processamento, os pixels da ima-
gem de entrada Img são filtrados com correção gamma para
reduzir a influência de mudanças na intensidade da luz. Em
seguida, aplica-se a Imggamma a máscara 1-D [−1 0 1] em
ambas as direções (x e y) de forma a obter as derivativas es-
paciais fx e fy para cada pixel. Das derivativas, são obtidos
a magnitude m e o ângulo θ de cada pixel. Para cada célula,
os valores de m e θ são acumulados em histogramas de ori-
entações compostos por 9 bins, que cobrem orientações de
0o a 360o em intervalos de 20o. Para reduzir o efeito de ali-
asing, o valor de m é ponderado entre dois bins vizinhos,
bin0 e bin1 (binning), na forma de dois votos, v0 e v1.

Para cada bloco, um filtro gaussiano é aplicado a fim de
reduzir a influência dos votos dos pixels que se encontram
nas bordas. Ainda dentro dos blocos, os votos de cada pi-
xel são interpolados bilinearmente entre suas células. Os
histogramas das células são então concatenados e o histo-
grama de bloco resultante (~v) é submetido a uma normali-
zação L2-Hys. Após este estágio, os histogramas de bloco
normalizados ((~vnorm)) da janela de detecção são concate-
nados em um descritor, o qual é submetido ao classificador
SVM. Este, por sua vez, retorna o valor de confiança da
classificação, o qual é comparado a um limiar. Se o valor
for maior que o limiar, isso significa que foi detectada um
instância do objeto procurado.

A cadeia de detecção pode ser repetida para diferen-
tes escalas da imagem de entrada e múltiplas detecções
da mesma instância de um objeto podem ser evitadas
aplicando-se um algoritmo de supressão não máxima nos
resultados. Esses últimos estágios não são abordados nesse
trabalho.

3. Setup do Sistema

Como ponto de partida, foi desenvolvida uma versão de
referência do algoritmo HOG baseada na implementação
das funções HOG da biblioteca OpenCV [7]. Buscou-se
manter as otimizações originais, como o uso de tabelas de
consulta para coeficientes de filtros e normalizações, utili-
zando, contudo, somente bibliotecas padrão da linguagem
C++, de modo a facilitar a portabilidade do código.

Os parâmetros do algoritmo para a aplicação de referên-
cia seguiram, na maior parte, o trabalho original de [1].
Utiliza-se uma imagem de entrada com resolução VGA
(640×480 pixels) em níveis de cinza, selecionada a partir
da base de dados de pedestres do INRIA [1]. Uma aborda-
gem de única escala é considerada. Utilizam-se janelas de
detecção de 64×128 pixels e blocos de 16×16 pixels con-
tendo 2×2 células de 8×8 pixels. Os blocos se sobrepõem
em 8 pixels, as orientações dos gradientes são acumuladas
em histogramas de 9 bins, e a janela desliza na direção de
ambos os eixos com um deslocamento de 8 pixels, totali-
zando 3.285 janelas por imagem.

Para avaliar essa versão da aplicação são considera-
das duas plataformas embarcadas. A primeira é um placa
ODROID XU3, com um processador ARM Cortex-A7
quad core, com frequência de 1.2Ghz, 512KB Cache e 2GB
RAM. A segunda plataforma utilizada é um kit de desen-
volvimento DE2i-150 [8], contendo um FPGA Altera Cy-

clone IV EP4CGX150DF31 GX com 149.760 elementos
lógicos, 720 blocos de memória M9K e 6.480 Kbits de
memória embarcada e 128MB de SDRAM externa. No
FPGA, inicialmente, foi instanciado um sistema single-
core baseado no processador Nios II [9]. O sistema é com-
posto por um núcleo Nios II/f com 5 estágios de pipeline, 4
KB de cache de instruções, 2 KB de cache de dados, acesso
à memória RAM on-chip e externa, ROM on-chip com o
vetor de classificação SVM e multiplicadores e divisores
em hardware habilitados. Como o algoritmo HOG faz uso
extensivo de operações de ponto flutuante com precisões
simples e dupla, o conjunto de instruções é estendido com
o hardware de ponto flutuante da Altera [9].

4. Avaliação e Aceleração do Código

A Tabela 1 apresenta os resultados do profiling da apli-
cação de referência ao ser executada em um único pro-
cessador nas duas plataformas. Por simplicidade, algumas
funções HOG foram agrupadas de acordo com seu contexto
na cadeia de extração de features e classificação. As tarefas
relacionadas ao processamento de blocos são responsáveis
por 92,9% e 78,6% do tempo de execução da aplicação para
os processadores ARM e Nios II, respectivamente. Este
grupo é composto pelas funções de filtro gaussiano, pela
interpolação bilinear e pela geração de histogramas (veja
Fig. 1), as quais são todas aplicadas sequencialmente ao
mesmo bloco de votos e bins. Como ocupam a maior parte
do tempo de execução, serão foco neste trabalho dos esfor-
ços para otimização.

Funções ARM@1.2GHz Nios II@150MHz
% # Ciclos % # Ciclos

Proc. de bloco 92,9 1,48G 78,6 11,0G
L2-Hys 3,7 59,0M 7,7 1,1G
SVM 2,8 44,7M 11,1 1,6G
Grad. e Binning 0,4 6,38M 2,2 0,32G
Outros 0,2 3,19M 0,4 57,0M
Total 1.59G ciclos 14,0G ciclos

Tabela 1. Resultado do profiling da aplicação de re-
ferência nos processadores ARM e Nios II

Apesar do uso de tabelas de consulta nas funções de pro-
cessamento de bloco já permitir uma execução mais efici-
ente, essas funções ainda executam muitas vezes um con-
junto de multiplicações e somas em ponto flutuante. Mais
precisamente, as funções de processamento de bloco são
executadas 105 (7× 15 blocos) vezes por janela de detec-
ção, uma vez por cada bloco dentro de uma janela. Para
os parâmetros especificados, a aplicação de referência pro-
cessa 3.285 janelas de detecção sobrepostas e, consequen-
temente, as funções de processamento de bloco são execu-
tadas 344.925 vezes. Contudo, como as normalizações e
os filtros são aplicados no máximo em nível de blocos, não
há necessidade de processar um bloco mais de uma vez,
não importando a que janela ele pertença. Ao considerar o
reuso de dados, é possível obter uma diminuição de duas
ordens de magnitude na execução de blocos, reduzindo o

20 REC 2016

número de chamadas a funções de processamento de bloco
para 4.661 (número de blocos sobrepostos dentro de uma
imagem).

Para eliminar o processamento redundante de blocos, foi
implementado um buffer de blocos que armazena dados de
blocos já processados em janelas de detecção anteriores.
Este buffer age como um apoio para a janela de detecção
deslizante, permitindo-a reutilizar blocos antigos e proces-
sar somente os novos. De forma similar à solução adotada
em hardware por [3], cada elemento do buffer consiste no
histograma de bloco normalizado de tamanho 1×36. Para
os parâmetros do algoritmo HOG mencionados, o buffer
de blocos requer 58 KB de memória para armazenar 7×59
histogramas de blocos utilizando números em ponto flutu-
ante com precisão simples.

Alguns melhoramentos menores também são feitos so-
bre a versão de referência, como a substituição da repre-
sentação de números de ponto flutuante com precisão dupla
por precisão simples, o reuso de resultados intermediários
para evitar acessos à memória, alinhameno de arranjos de
estruturas e a implementação eficiente de funções (e.g. fun-
ção floor). Denomina-se, a partir daqui, otimizada a versão
com as melhorias apresentadas.

5. Arquitetura Multicore

A partir da aplicação otimizada, procura-se aproveitar
a flexibilidade oferecida pelo FPGA e utilizar processa-
mento paralelo para obter ganhos em desempenho. Para
isso, é feita uma distribuição das funções do HOG entre
um arranjo de processadores em pipeline. Neste trabalho,
considera-se a implementação de um pipeline com dois es-
tágios de processadores Nios II, conforme ilustrado na Fi-
gura 2.

Nios II/f

P2

D$
I$

FPH2
FIFO
SLV

DTCM

...

Nios II/f

P1

D$
I$

FPH2

DTCM

FIFO
MST

Avalon Int. Fabric

On-chip
RAM

Controlador
SDRAM

Cyclone IV FPGA

SDRAM Externa

Correção Gamma, Gradiente,
Mag. & Ângulo, Votação & Binning,

Filtro Gaussiano, Interp. Bilinear,
Geração de Histograma

Normalização L2-hys,
Classificação SVM

Avalon Int. Fabric

On-chip
RAM

Figura 2. Arquitetura multicore em pipeline com dois
estágios.

Cada instância do Nios II (P1 e P2) contém caches de
instrução (I$) e de dados (D$), hardware de ponto flutu-
ante (FPH2) e memórias on-chip locais. Os processado-
res intercomunicam-se por meio de um módulo FIFO. So-
mente P1 acessa a memória SDRAM externa, de onde é

obtida a imagem de entrada. Além disso, os processado-
res utilizam memórias fortemente acopladas (DTCM) para
armazenar dados frequentemente utilizados, tais como ta-
belas de consulta e pesos do vetor de classificação SVM.
Como essas memórias não compartilham o barramento
com outros módulos, acessos são realizados em um único
ciclo de relógio. Os processadores interagem com a FIFO
utilizando interfaces de instrução customizada (FIFO MST
e FIFO SLV), evitando acessos ao barramento do sistema.
Do ponto de vista do software, acessos ao FIFO são rea-
lizados em dois ciclos de relógio, por meio de instruções
bloqueantes simples do tipo put() e get().

A aplicação é balanceada entre P1 e P2 considerando os
dados de profiling da Tabela 1. Os melhores resultados são
obtidos mapeando-se a normalização L2-Hys e a classifica-
ção SVM em P2. P1 realiza os estágios de processamento
desde a correção gamma até a interpolação bilinear, envi-
ando os histograma de blocos parciais para o FIFO (com
capacidade de 4KB). As aplicações em P1 e P2 implemen-
tam o buffer de blocos para reuso dos dados do histograma
de blocos. A aplicação sendo executada no sistema multi-
core é denominada pipeline-2stg.

6. Resultados Experimentais

As versões de referência e otimizada são avaliadas
nas duas plataformas embarcadas, considerando sistemas
single-core. Os resultados são apresentados na Figura 3.
Percebe-se que o uso do buffer de blocos e das demais me-
lhorias resultam em speedups de 16× e 19,3× para os pro-
cessadores ARM e Nios II, respectivamente. Além disso, a
influência das funções de processamento de bloco no tempo
total de execução é reduzida a 41% no ARM e a 20% no
Nios II. O tempo de execução no ARM é reduzido para
0,1s por frame, possibilitando o processamento de 10 fps.

(a) Execução no processador
ARM (single-core)

(b) Execução nos sistemas single-
core e multicore NiosII

Figura 3. Throughputs em termos de seg./frame para
os sistemas baseados em (a) ARM e (b) Nios II.

Avalia-se também a execução da versão (pipeline-2stg)
no sistema multicore da Seção 5. A distribuição da aplica-
ção no pipeline de processadores superou em 2.4× a versão
otimizada e em 47,2× a versão original. Observa-se que
o tempo de execução por frame é reduzido de 4,91s para
2,1s, mais que dobrando o desempenho. Códigos meno-
res divididos entre processadores e menor carga de dados
por núcleo de processamento permitem melhor eficiência
no uso das memórias locais. Ainda, a utilização de me-
mórias fortemente acopladas também possibilitam acesso
mais rápido a dados frequentemente utilizados e melhora o
desempenho.

REC 2016 21

7. Trabalhos Relacionados

Desde a publicação original por [1], vários autores
desenvolveram implementações em FPGA do algoritmo
HOG (veja, e.g., os trabalhos em [3, 4, 10, 11]). Embora
essas arquiteturas alcancem desempenho em tempo real e
níveis de consumo de energia adequados para sistemas em-
barcados, o uso de hardware fixo torna difícil a adaptação
do algoritmo a diferentes situações, aplicações, combina-
ções com outras técnicas e exploração do espaço de pro-
jeto.

Alguns autores propuseram soluções mais flexíveis,
como a arquitetura EFFEX de [5], desenvolvida para acele-
rar aplicações de extração de features como o HOG. A ar-
quitetura utiliza um núcleo de processamento central mais
complexo, capaz de processar tarefas de alto nível, rode-
ado por vários núcleos periféricos mais simples para ope-
rações em vizinhanças de pixels. Os resultados são obti-
dos mediante simulação, atingindo 10 fps com resolução
1024× 768. O trabalho em [6] utiliza processadores soft-
core específicos para processamento de imagem baseados
em FPGA, chamados de IPPro. Nos experimentos apre-
sentados para os primeiros estágios do algoritmo HOG e
um único núcleo IPPro, atinge-se 3 fps na geração de his-
togramas de células para um frame de 1920×1280 pixels.
Como comparação, para os mesmos estágios, nossa arqui-
tetura atinge 2 fps utilizando, contudo, um frame VGA.

Neste trabalho, utiliza-se um processador soft-core já
bem estabelecido e que permite acelerar o algoritmo HOG,
explorando diferentes características arquiteturais. Esse
fato representa uma vantagem, considerando-se o conjunto
de ferramentas disponíveis ao desenvolvedores. Além
disso, a flexibilidade dessa proposta possibilita a explora-
ção de diferentes configurações e variações do algoritmo
HOG, assim como sua combinação com outras features.
A comparação com as implementações customizadas em
hardware destacam a lacuna de desempenho e a necessi-
dade de pesquisas adicionais em aceleradores customiza-
dos em hardware para melhorar o desempenho, mas pre-
servando os objetivos em relação à solução flexível.

8. Conclusões

Neste artigo, o desempenho do algoritmo HOG foi ana-
lisado em duas plaformas embarcadas, uma baseada em
FPGA e uma baseada em um processador embarcado de
propósito geral. A partir da análise do algoritmo por meio
de profiling, mostramos algumas transformações de código
e exploração de paralelismo para obtenção de maior desem-
penho. As transformações de código possibilitaram me-
lhorar em 16× vezes o tempo de execução no processador
ARM e em 19,3× no processador Nios II, em comparação
à implementação de referência. No caso da execução no
sistema do processador Nios II, buscou-se ainda explorar a
execução do algoritmo em um sistema multicore com pipe-
line de processadores. A exploração do paralelismo tempo-
ral do algoritmo proporcionou um speedup de 47,2× vezes
em relação à execução sequencial do algoritmo de referên-
cia em um sistema Nios II de um núcleo.

Apesar dos speedups significativos alcançados, o tempo
de execução ainda é bastante longo para muitos sistemas
que requerem deteccão de objetos em tempo real. O traba-
lho em desenvolvimento está focado no uso de aceleradores
em hardware customizados para melhorar o desempenho,
na avaliação de escalabilidade e no uso de mais núcleos de
processamento no pipeline do sistema multicore. Ainda,
planeja-se avaliar outros esquemas de comunicação entre
processadores para aumentar o throughput.

Agradecimento

Este trabalho foi realizado com o auxílio do Programa
de Cooperação Internacional CAPES/PDSE na Universi-
dade do Porto. Processo # BEX 3625/15-0.

Referências

[1] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 1, pages
886–893, San Diego, CA, USA, June 2005.

[2] Rodrigo Benenson, Mohamed Omran, Jan Hendrik Hosang,
and Bernt Schiele. Ten years of pedestrian detection, what
have we learned? In Computer Vision - ECCV 2014
Workshops, Proceedings, Part II, volume 8926 of Lecture
Notes in Computer Science, pages 613–627, Zurich, Swit-
zerland, September 2014. Springer.

[3] Xiaoyin Ma, W.A. Najjar, and A.K. Roy-Chowdhury. Eva-
luation and acceleration of high-throughput fixed-point ob-
ject detection on fpgas. IEEE Transactions on Circuits and
Systems for Video Technology, 25(6):1051–1062, June 2015.

[4] S. Advani, Y. Tanabe, K. Irick, J. Sampson, and V. Na-
rayanan. A scalable architecture for multi-class visual ob-
ject detection. In 25th International Conference on Field
Programmable Logic and Applications, pages 1–8, London,
Sept 2015. IEEE.

[5] J. Clemons, A. Jones, R. Perricone, S. Savarese, and T. Aus-
tin. Effex: An embedded processor for computer vision ba-
sed feature extraction. In 48th ACM/EDAC/IEEE Design
Automation Conference, pages 1020–1025, New York, June
2011. IEEE.

[6] C. Kelly, F.M. Siddiqui, B. Bardak, and R. Woods. Histo-
gram of oriented gradients front end processing: An fpga
based processor approach. In IEEE Workshop on Signal
Processing Systems, pages 1–6, Belfast, Oct 2014. IEEE.

[7] Adrian Bradski. Learning OpenCV, [Computer Vision with
OpenCV Library ; software that sees]. O‘Reilly Media, 1.
ed. edition, 2008. Gary Bradski and Adrian Kaehler.

[8] Terasic. DE2i-150 FPGA System User Manual. Terasic Te-
chnologies Inc., 2013.

[9] Altera Corporation. Nios ii classic processor reference
guide, April 2015.

[10] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and
K. Doll. Fpga-based real-time pedestrian detection on high-
resolution images. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 629–635, Por-
tland, June 2013. IEEE.

[11] M. Hemmati, M. Biglari-Abhari, S. Berber, and S. Niar. Hog
feature extractor hardware accelerator for real-time pedes-
trian detection. In 17th Euromicro Conference on Digital
System Design, pages 543–550, Verona, Aug 2014. IEEE.

22 REC 2016

A hardware/software codesign framework for

vision-based ADAS

Leandro A. Martinez, José A. M. de Holanda, Eduardo Marques

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo

Av. Trabalhador São-Carlense, 400 – CEP 13566-590 São Carlos, SP, Brasil

lmartinez@usp.br, arnaldo@icmc.usp.br, emarques@usp.br

Abstract— This paper presents a framework for hardware and

software co-design to building systems designed to driver assistant

using computer vision. This work is part of a doctoral research

project nearing completion. To validate the model, a modular

pedestrian detection is implemented by comparing the results

obtained with other design.

Keywords—ADAS; Hardware Software Co-design; FPGA;

Reconfigurable Architectures;

I. INTRODUCTION

Avoid traffic accidents are still one of the biggest problems
facing the world. With the new technologies of embedded
systems emerge several proposals that need to be thoroughly
validated and tested. However, simulate and test new projects in
the various possible environments combining software
algorithms with reprogrammable hardware makes the problem
complex and multidisciplinary in computing. Thus, to contribute
to this area of research, this article presents a framework for
hardware and software co-design to build systems designed to
support drivers using computer vision.

All processes and components used to build ADAS
(Advanced Driver Assistance Systems) must be safe, secure, and
reliable. Validation and extensive tests is an enormous
undertaking and the most challenging aspect of ADAS
development, especially when it happens to the vision system.
To test all scenarios and to produce 100% accuracy and zero
false positives, under all possible conditions, thousands of hours
of video clips must be gathered and run in regression test
database. [1,2]

II. VISION FRAMEWORKS

There are many frameworks for video and image processing
used in automotive vision systems and in constantly evolving,
however, many of these projects have either been closed, some
are unsuitable for a real-time view, some lacked a user-friendly,
or not adopted a modular design.

The Baselabs [3] provides the infrastructure for the
development of rapid prototyping ADAS to develop ADAS
allowing collection, recording and reproduction of sensor data
and the fusion of complex data sensors; the tool includes a
graphical user interface with several components.

The Intempora RTMaps [4] is a framework for prototyping
algorithms with a modular environment for testing and

evaluating functions based on different sets of sensors with
different settings. It also has a component library prepared to
develop ADAS. It is extensible allowing the customization of
user modules.

The Comemso ADTF [5] is also a framework for image
processing systems in the automobile industry. Allows creation
of image filters and hardware interfaces connections for
embedded systems. It provides tools for testing and simulation.

MontiVision [6] provides a set of tools that allows the
development of image processing applications in a customized
manner. The development kit includes several image processing
modules. The image filters can be defined and customized by the
user through a visual interface. The kit also includes a set of
sample applications to demonstrate use.

ImprovCV [7] offers an open source modular system for
vision data flow processing in software. It enables rapid
interactivity with the user for the development of ADAS vision
applications.

The NI LabVIEW [8] is a software base of National
Instruments design platform for the development of
measurement or control systems. Integrating several tools and a
development environment aimed at problem solving,
accelerated productivity and continuous innovation.

MATLAB HDL Coder and HDL Verifier [9] provides an
integrated project environment that accelerates the development
of FPGAs and ASIC designs, integrating design tools and IP for
FPGA from Xilinx and Altera. This environment provides an
extensible programming system as well as a dataflow
architecture.

Unfortunately, most these systems are not open source, and
a few have hardware/software integrated simulation.

III. SYSTEM DESIGN

Through an open source platform, the Vision-ADAS
Framework presents the user with a simple data stream interface
(see Figure 1). Using composite nodes could make several
combinations of filters in video streams or images.

A. Developing Environment

The platform offers many features for image processing.
There is an own library of blocks that can be synthesized directly
by the tool for use in FPGA. Even if not all nodes of filters are

REC 2016 23978-989-704-110-5 © REC 2016

available for hardware and embedded software versions, it can
be used in simulations and data entry for blocks already
available.

Fig. 1. Main Screen Design Tool

Through IP blocks (Intellectual Property) the user can drag
and drop image processing filters for the GUI and view its effect
directly on the selected video. Each filter has parameters that can
be adjusted in real time to provide immediate feedback.
Allowing complete interactive testing of vision systems and
simplifies parameter tuning.

B. Simulation

The video input node can be connected allowing direct
comparisons of various computer vision algorithms. The
application is an open source software and can be extended or
adapted to interoperate with other systems.

There are three features that the IP nodes may have:

1) Nodes only for simulation: The simulations can use all
kind of nodes, but some are not able to be embedded directly
into FPGA. Usually coded for tests and converted later. An
example is the OpenCV [10] libraries that can be used. The great
advantage of this kind of block is the possibility of using other
C-based applications to validate expected results.

2) Nodes ready for embedded processor (SoC): The nodes
can have pre-programmed codes to be used in an embedded
processor. During the compilation, control subroutines are
included with the code to be used by embedded processor.

3) Nodes ready to be synthesized in hardware: With
prepared blocks to hardware generation, the system uses a pre-
compiled HDL software (Hardware Description Language) to
simulate the application. In the project compilation, a script code
is created for generation hardware containing the blocks and
execution systems controls.

In this environment, the IP creation can first be tested by a
software team then converted into a hardware version or even an
embedded software. Thus, a software block or a hardware block
can use its inputs and outputs to contribute to the construction

and validation of its complement. This method allows better
cooperation between development teams.

C. Overall System Architecture

The ultimate goal is the design deployment on a hardware
architecture and is needed to follow several steps after validation
in functional simulation. The Figure 2 shows a full flow using
the framework for a hardware validation.

Fig. 2. Full flow using the framework

Environment Configuration: The first step is to select the
FPGA board with intended design. With the user design
specifications, a template model is selected with a preassembled
system and can be changed later. The templates are validated
designs containing examples of the use of the tool for various
ADAS.

Design Composing: The system provides an IP library where
the user can drag and drop to the workspace and link them to
other blocks. The IP can be hardware or software, depending on
the user's choice and availability in the library. Each IP has a set
of parameters that can be modified during the project
maintenance.

Functional Simulation: During the drafting of the project,
you can do a functional simulation of the design. The system
uses pre-compiled routines IPs to make the processed images
preview. The user can also switch between sequential images
bases for comparison of results.

Framework Compiler: In the compilation, the system checks
if all used blocks in the design allow embedded use. In this case,
for hardware IPs, the system generates source code scripts in
Bluespec language [11]. For the software IPs, the compiler
creates source code scripts for NIOS II. These scripts have a
standard format for communicating with the internal block
execution control.

Send to Hardware: For a whole generation of hardware, the
user must compile the project generated by the framework in
Bluespec development IDE. If required, other hardware
simulations using BlueSim tool can be made. The Bluespec
generates files in Verilog format into a standard design. The
project needs to be synthesized by the user in Quartus II IDE
[12] and sent the FPGA board. Full implementation depends on

24 REC 2016

the compilation of the project generated within the NIOS II IDE
[13] and sends to the embedded processor in the FPGA.

D. IP Construction

To extend the tool with new IP synthesized, developing
embedded code structures is required.

For IP software validation, in Figure3, a pre-established
pattern of construction must be used. The main file IP.c contains
the proposed algorithm and should be compatible with the
libraries used by NIOS II. For testing, the script TestBench.c
must run, allowing read the entries of data from a source file
iStream.bin to be used in the algorithm test and save the output
to a verification file: oStream.out. Finally, with the system
running in the embedded environment, the profiling can be done
to extract various features of the proposed algorithm.

Fig. 3. Embedded software validation of IP

For IP hardware validation in Figure 4, the main file IP.bsv
contains the proposed algorithm in Bluespec language. If
necessary, the language allows using verilog structures using
wrapping to this purpose. Compilation generates a verilog file
IP.v that can be added to a validation template in Quartus II. By
profiling techniques, it is possible to extract various
characteristics of the hardware generated.

Fig. 4. Embedded hardware validation of IP

The BlueSim allows the validation of the generated
hardware through a program written in Bluespec language at
TestBench.bsv. Just as the blocks are validated software, the data
inputs can be read from a source file iStream.bin and generates
an output file oStream.out.

In both cases, we compare the fStream.bin files with the
output PC software implementation.

IV. PEDESTRIAN DETECTION

The proposal for the tools validation is a use of a system of
pedestrian detection as in [14] in Figure 5, comparing the final
results with original work. Then modify the image stabilization
system with an another author propose. In the first detection
work, the stabilizer is made with a cumulative vector of values
pixel and the compares with the same vector of the previous
frame. In the second proposal, there is an implementation of
optic flow in hardware.

Fig. 5. Proposed model for pedestrian detection

A. Vector Image Stabilization

Differentiation of frames in a video sequence requires that
there be alignment between images, so this IP is necessary for
the proper functioning of the system. The detection of moving
objects in a real environment is a complex task because the
background image is constantly changing. Therefore, this
module uses a vector size of the image height for storing the sum
of each pixel row. In the module to stabilize these vectors are
compared and bring results in displacement of the axis Y.

By using only one vector, this implementation becomes very
simple to build in a hardware system. There are many
approaches to image stabilization. However, many of them
depend on many logic elements for its construction.

 𝑣(ℎ) = ∑ 𝑝𝑤
𝑖=0 (1)

In the equation (1), h is each line of the vector; w is the frame
width, and p is a pixel intensity. The vector size has the height
of the frame.

REC 2016 25

Fig. 6. Image stabilization vector

In the construction of this resource, the vector movement
was determined by the algorithm histogram of each image line
of the current frame compared to the histogram of each row in
the table above. This approach proved to be efficient, yet has
only been developed to identify vertical displacements, so the
system is not prepared to work with the vehicle cornering, only
allows the vehicle to move forward.

B. Optical Flow

A proposed solution to solve the alignment problem between
frames is to create motion vectors of the image. Thus, to
minimize the effect of camera shake the image is divided equally
into four regions and calculated on the four vectors representing
the motion vector. The main disadvantage of this approach is the
computational cost when compared to vector stabilization.

In order to evaluate the image stabilization system, was used
as a base, the work of [15] which was based on the [16]
architecture, which is built an optical flow system.

Fig. 7. Proposed Optical Flow

Optical flow algorithms are used to detect the direction and
relative magnitude of motion of a scene relative to an observer.
In this project, the optical flow will be used for image
stabilization, creating a correction azimuth to be used in the
subtraction of frames.

 [
∑ 𝐼𝑥

2 ∑ 𝐼𝑥𝐼𝑦

∑ 𝐼𝑥𝐼𝑦 ∑ 𝐼𝑦𝐼𝑥
] [

𝑢1
𝑢2

] = − [
∑ 𝐼𝑥𝐼𝑡

∑ 𝐼𝑦𝐼𝑡
] (2)

The logic for calculating the optical flow estimation is given
by a discrete spatial and temporal derivatives. Using convolution
with Sobel filter, spatial derivatives are calculated. The temporal
derivative is the result of the difference between the two frames.
With these data, the system equation (2) is solved using multiple
products per pixel and the result is summed over the
neighborhood of pixels (3 x 3). As a result generates the optical
flow field.

C. Motion Detection Object

A process widely used to detect moving objects is the
differentiation of image frames. The algorithm used for this has
low complexity. However, as seen in the previous section, this
algorithm does not work correctly when the camera is in motion
and the alignment of frames from getting too far apart. With the
vector representing the vertical camera movement (offset), is
possible to compensate the shift for remaining frame alignment.

The equation for frame differencing:

 𝑑(𝑖, 𝑗) = |𝑓𝑛(𝑖 + 𝑥, 𝑗 + 𝑦) − 𝑓𝑛−1(𝑖, 𝑗)| (3)

Where x and y are vectors representing movement of the
camera. Figure 8 shows the image with the difference in
intensity between two consecutive frames.

D. Noise Removal

After the differentiation of subsequent image frames is
possible to detect objects that moved in the transition, however,
the irregular movement of the camera can generate noise when
there is differentiation. To solve this problem, a preprocessing
step is necessary to minimize noise regions. Thus, several
algorithms for noise reduction can be used, for example, the
nonlinear median filter, which smooths the image without
lowering the resolution.

Fig. 8. Results of the difference of two frames

The original technique proposed by [17], consists of
calculating image histograms, combining them to form the
feature vector. First, the image is normalized. Then the

26 REC 2016

histograms are calculated horizontal and vertical histograms
well known and used for recognition.

E. Connected-component labeling

In figure 9, the connected-component labeling algorithm
used for the detection of scene objects. This algorithm is used in
computer vision to detect connected regions in binary digital
images.

Fig. 9. Qualification of the Region of Interest

F. Classifier

As shown in Figure 10, there is considerable variation in the
size of the pedestrian's point of view of the camera. Thus, it
becomes necessary to use simple algorithms to extract distances,
therefore, to avoid a collision, the pedestrian recognition of a
task should be performed in real time [18].

Fig. 10. Size range of pedestrian [14]

With the extraction of features and applying a comparison
distance and size of the second generator makes the most
accurate information.

G. Detection Results

Some objects have to be manually implemented because not
yet available in the tool, such as an SD card reader used by the
original design for image reading by NIOS II.

Fig. 11. Schematic model of the generated hardware

Using the same source of image data and the same
algorithms, the result of detections were identical to the results
of the core work.

During the synthesis, it was necessary to make some timing
adjustments.

How expected, the optical flow for the image stabilization
has good vantage; Table 1 shows the comparison between image
stabilizers:

TABLE I. DETECTION WITH DIFFERENT STABILIZATIONS

Stabilization Hits
False

Positive

False

Negative

N/A 40% 20% 40%

Vector 83% 9% 6%

Optical Flow 91% 2% 7%

a. Images without any stabilization.

H. Hardware and Software Development Platform

The platform for the generated hardware validation is the
Terasic FPGA board DE2i-150 [19]. The specifications are:

 Cyclone IV EP4CGX150DF31 device

 149,760 LEs

 720 M9K memory blocks

 6,480 Kbits embedded memory

 8 PLLs

 128MB (32Mx32bit) SDRAM

 4MB (1Mx32) SSRAM

 64MB (4Mx16) Flash with 16-bit mode

 Three 50MHz oscillator clock inputs

The main window of the application is based on Blender
Software [20].

V. FUTURE WORKS

There is still much work to do, the tool still needs many
resources to be easily used. Such as:

 Construction of an IP validation system: it facilitates the
creation of new blocks.

 Tests with different FPGA boards, exploring its
resources.

 Construction of various IPs, mainly by converting the
existing algorithms for embedded use.

 Construction of several templates to facilitate learning
with the tool.

 Create a repository for the results compared with other
works.

 Create components that can be tested by the tool by
communicating directly with the embedded hardware.

REC 2016 27

VI. CONCLUSION

We have presented a vision-ADAS Framework for
hardware/software co-design, an open source component-based
automotive vision application. The main application advantages
have been demonstrated through a use case for the detection of
pedestrians. Although still not be a complete tool, the framework
presents promising features through validations of some IPs and
running some algorithms tests. From the data presented in Table
1, it was proved that in the proposed detection scheme, the image
stabilization using the optical flow is critical. It may also be
noted that the vector for stabilization algorithm, despite its
simplicity, gives good results compared to results without image
stabilization. In this work, using components from other projects
and with the same data source samples were obtained the same
original results, thus showing, that is possible to migrate external
projects to the tool without creating interference in the results
and allowing design space exploration.

ACKNOWLEDGMENT

The authors would like to thank CAPES and ICMC-USP for
the financial support given to this research project. Additionally,
the authors are also grateful to the reviewers for their significant
contribution to improving the paper clarity and for future work
suggestions.

REFERENCES

[1] Kisačanin, B., Gelautz, M. (eds), Advances in Embedded Computer

Vision, Springer, 2014.

[2] K. Bengler, K. Dietmayer, B. Färber, M. Maurer, C. Stiller, and H.
Winner, “Three Decades of Driver Assistance Systems: Review and
Future Perspectives,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 4, pp. 6
– 22, 2014

[3] Baselabs Flexible ADAS Development web site. [Online] Accessed April
2016. http://baselabs.de/flexible-adas-development-kopie.html

[4] Intempora web site. [Online] Accessed April 2016.
http://www.intempora.com

[5] Comemso web site. [Online] Accessed April 2016.
http://www.comemso.com/index.php/software

[6] MontiVision Development Kit (SDK) web site. [Online] Accessed April
2016. http://www.montivision.com

[7] Boeing, A.; Braunl, T. "ImprovCV: Open component based automotive
vision," Intelligent Vehicles Symposium, 2008 IEEE , vol., no.,
p.297,302,4-6 Jun 2008

[8] MATLAB LabVIEW web site. [Online] Accessed April, 2016.
http://www.ni.com/labview

[9] MATLAB HDL Coder web site. [Online] Accessed April, 2016.
http://www.mathworks.com/fpga-design/hardware-software-
codesign.html

[10] OpenCV web site. [Online] Accessed April 2016. http://www.opencv.org

[11] Bluespec SystemVerilog User Guide, web site. [Online] Accessed April
2016. http://wiki.bluespec.com/Home/BSV-Documentation

[12] Introduction to the Quartus II Software. web site. [Online] Accessed April
2016. http://www.altera.com/literature/manual/intro_to_quartus2.pdf

[13] Altera NIOS II Hardware Tutorial web site. [Online] Accessed April
2016. http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

[14] Martinez, L. A.. Projeto de um sistema embarcado de predição de colisão
a pedestres baseado em computação reconfigurável, 2011. Master degree
work. [Online] Accessed April 2016.
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27022012-
110356/pt-br.php

[15] Lobo, T. M.. Co-projeto hardware/software para cálculo de fluxo ótico,
2009. Master degree work. [Online] Accessed April 2016.
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082013-
094816/en.php

[16] MIT 6.375 web site. [Online] Accessed April 2016,
http://csg.csail.mit.edu/6.375/6375_2011.

[17] Jalalian, A. , Fathy, M. Pedestrian Detection from a Moving Camera with
an Advanced Camera-Motion Estimator. Third International IEEE
Conference on Signal-Image Technologies and Internet-Based System,
2008.

[18] Gavrila D., Munder S. “Multi-cue Pedestrian Detection and Tracking
from a Moving Vehicle” International Journal of Computer Vision
Springer Science, 2006.

[19] Terasic DE2i-150 FGA Development Kit. web site. [Online] Accessed
April 2016. http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=11&No=529&Par
tNo=1

[20] Blender website. [Online]. Acessed April, 2016. https://www.blender.org/

28 REC 2016

Image Fusion in FPGA Using Xilinx Design Tools

João P. Malés
Computational Intelligence Group of CTS/UNINOVA

Campus FCT-UNL, Caparica, 2829-516, Portugal
 jpmp@ca3-uninova.org

António J. Falcão

Computational Intelligence Group of CTS/UNINOVA
Campus FCT-UNL, Caparica 2829-516, Portugal

 ajf@uninova.pt

Tiago M. A. Santos

Computational Intelligence Group of CTS/UNINOVA
Campus FCT-UNL, Caparica, 2829-516, Portugal

tms@ca3-uninova.org

Rita A. Ribeiro

Computational Intelligence Group of CTS/UNINOVA
Campus FCT-UNL, Caparica, 2829-516, Portugal

 rar@uninova.pt

Abstract — Field-Programmable Gate Arrays (FPGAs)
have been used in many areas of research. As described in
this paper, they are used to accelerate an image fusion
algorithm, previously coded in ANSI C. The chosen option
to convert the algorithm’s code into a Hardware
Description Language (HDL) is Vivado High-Level
Synthesis (HLS), a semi-automatic tool from Xilinx
vendor. The adopted hardware was a ZedBoard, which
comprises a dual-core ARM Cortex-A9 processor and a
Xilinx FPGA equivalent to an Artix-7.

The first objective of this paper is to analyze the Xilinx
bundle and to discuss in detail the tools’ workflow in order
to provide support to prospective developers.

The second objective is to discuss the obtained results,
regarding the area and latency of the FPGA design, and
also by comparing them with results of the algorithm’s
modules compiled in two other architectures.

Keywords — Field-Programmable Gate Array (FPGA);

Hardware Description Language (HDL); Image

Manipulation and Fusion Algorithm; Vivado High-Level

Synthesis (HLS).

I. INTRODUCTION
 FPGAs [1][2] are powerful reprogrammable integrated
circuits containing grids of logic blocks, where the wires
connecting them can be programmed, again and again,
changing each time the envisioned function for the set of
blocks. The logic blocks can be configured in diverse ways so
as to capitalize on parallel processing to increase processing
performance. This parallelization characteristic makes FPGAs
the perfect candidate for algorithms’ optimization and thus
they have been widely used in different areas of research e.g.
image processing [2], image and video compression [3],
neural networks [4], biomolecular simulations [5], etc.
 One of the areas where it is natural to implement software
into FPGAs is image manipulation and fusion – image fusion
is the process of aggregating data from different sources, such

as multi-sensor’ images, to obtain an aggregated global picture
where information on the different inputs is encapsulated [6];
before the fusion of the data, handling and manipulating each
inputs’ data is necessary. Within these algorithms there is,
generally, a repetition of the tasks done to each pixel, thus
having routines ideal for possible parallelization. Therefore,
the first proposed objective for this paper is to accelerate the
processing time of an information fusion algorithm [7][8] by
resorting to an FPGA. For this purpose, the hardware used is a
ZedBoard [9], which includes two main components: a
Processing System (PS) that includes a dual-core ARM
Cortex-A9 processor and the Programmable Logic (PL) side
that is equivalent to a Xilinx’s Artix-7 FPGA. The selected
hardware was chosen because of its availability at UNINOVA
and because our aim was to demonstrate that FPGA
implementations could significantly reduce the processing
time of the intrinsic huge amounts of data to be handled by
any image fusion algorithm.
 For the transformation of the algorithm’s modules C code
into FPGA, it is necessary to convert the software language to
Hardware Description Language (HDL), which can be
uploaded into the FPGA. There are two ways to perform this
transformation: (a) learn a HDL language and hand-craft the
HDL design; (b) utilize one of the available semi-automatic
tools to convert C into HDL following some user guidelines
[10]. Since the first solution is too demanding, especially for
software engineers [2][11] we opted for a semi-automatic tool
from Xilinx, the Vivado High-Level Synthesis (HLS) [12].
This constitutes the second proposed objective for the paper:
study the existing tools – in more detail Vivado HLS which
was the chosen one – in order to check their maturity level and
if they already constitute valid alternatives to hand-crafted
solutions.
 The ZedBoard’s design [9] – PS and PL sides included –
was created with Xilinx’s Design Tools: Vivado HLS, Vivado
Design Suite and Software Development Kit (SDK). Each tool
of the bundle is analyzed in this article and the work

REC 2016 29978-989-704-110-5 © REC 2016

mailto:jpmp@ca3-uninova.org
mailto:ajf@uninova.pt
mailto:tms@ca3-uninova.org
mailto:rar@uninova.pt

performed in each of them hereby demonstrated and
discussed.
 Further, results regarding performance and FPGA’s utilized
resources are discussed. Results of the implemented FPGA
design are compared with the same modules implemented in
two different hardware architectures: an Intel Core™ 2 Duo
3.33 GHz and the ARM Cortex-A9 processor of the
ZedBoard, working at 667 MHz.

II. IMAGE FUSION ALGORITHMS
 In this work we used modules of a general fusion
algorithm, called Fuzzy Information Fusion (FIF) [13] –
Figure 1 –, specifically the data preparation and data
manipulation modules (in FIF the manipulation module is
separated into rating process and aggregation process [13]).
The implemented code and datasets used for demonstration of
the manipulation and fusion of images come from the
Intelligent Planetary SIte Selection (IPSIS) algorithm [7][8].
The IPSIS goal is to select, in real-time, an adequate
spacecraft landing site, meeting mission, safety and
reachability requirements [7][8].

Figure 1 –FIF algorithm schematic.

 The objective of our demonstrative modules (data
preparation and data manipulation modules of IPSIS [7][13])
is to compute an aggregated single NxM global hazard map
(fusion of images), where the information derives from the
input maps (and hence parameters) previously rated. The input
is a set of n maps (images representing evaluation criteria)
with data on different parameters - e.g. slope, shadow,
visibility, roughness, etc – and all of them have the same NxM
pixels’ size. These n maps are collected in different units
hence, the data in those maps needs to be converted and
prepared in order to be numerically comparable, manipulated
and aggregated.
 The Data Preparation module comprises [13]: a)
normalization taking into account fuzzy membership functions
for each input parameter [14]; b) filtering of uncertainty
related with the confidence and accuracy of each parameter; c)
weighting functions to express the relative importance given
by the decision maker to the different parameters. In turn, the
Aggregation module [13] is responsible for fusing the
normalized, filtered and weighted values of every parameter
for each pixel.
 Fundamental mathematical operations for each procedure
consist of: sums/subtractions, multiplications and divisions for
both Data Preparation and Aggregation modules; exponentials
only in Data Preparation module; arc tangents used within
Aggregation module.

 The workflow designed for the two modules can be
observed in Figure 2, where on top one can see a more
detailed flow of Data Preparation and below the Aggregation
process.

Figure 2 – Workflow for the Data Preparation and Aggregation modules.

 In terms of coding structure, it is presented hereafter a high-
level representation in pseudocode of how the modules in
question are called.

CYCLE1: for each value in dimension_M of images do
 CYCLE2: for each value in dimension_N of images do
 CYCLE3: for each map in n input maps do
 Normalize (current pixel of current map)
 Filter_uncertainty (normalized value)
 Weight (filtered value)
 end CYCLE3
 final_result = Aggregate (weighted values)
 end CYCLE2
end CYCLE1

 Looking at the given pseudocode, one can easily see that the
Data Preparation section runs NxMxn times while the
aggregation part runs NxM times. Thus, the image
manipulation and fusion processes in question have significant
room for parallelization and the transition to FPGAs seemed
promising, since their programmable logic is inherently
parallel.

III. HARDWARE OVERVIEW AND METHODOLOGY

A. Hardware

 The chosen equipment was a ZedBoard, a board developed
by DIGILENT [9] which comprises a dual-core ARM Cortex-
A9 processor with a Xilinx FPGA equivalent to the Artix-7
FPGA family and several other components such as OLEDs,
512 MB of DDR3 memory, USB and Ethernet ports, 4 GB SD
card slot, etc. As mentioned above, the choice of hardware
was due to its availability at UNINOVA and because our
focus is on demonstrating that a FPGA implementation of
image fusion processes – always a problem when dealing with

30 REC 2016

huge quantities of data – highly contributes to reduce their
processing time.
 From this point on, the ARM A9 processor will be referred
to as the PS side of the system, while the FPGA components
will be referred to as the PL side. In table 1 one can observe
the main specifications and components of each side on the
ZedBoard [9].

Processing System
(PS)

 Processor Core Dual ARM
Cortex-A9

 Maximum
Frequency

Up to 667 MHz

 On-Chip Memory 512 MB DDR3
Programmable Logic
(PL)

 Xilinx 7 Series PL
Equivalent

Artix-7 FPGA

 PL Cells 85K Logic Cells1
 Look-Up Tables

(LUT)
53,200

 Memory LUT 17,400
 Flip-Flops (FF) 106,400
 Extensible RAM

(BRAM)
140

 Digital Signal
Processing (DSP)
Slices

220

 Clock Buffers
(BUFG)

32

Table 1 - ZedBoard’s components [9].

B. Method

 The devised strategy to convert our image manipulation and
fusion modules, previously coded in ANSI C language [7][8],
to HDL capable of being synthesized2 into the ZedBoard’s PL
side, used a semi-automatic tool, the Vivado HLS [12]. The
emphasis on “semi” is due to the fact that these tools are
incapable of producing solutions that can be exported into
FPGAs without user control and specific directives, let alone
achieving solutions efficient enough to rival with manually
produced HDL solutions.
 The reasons for choosing a semi-automatic tool instead of
manually generating HDL code were: 1) Even with the
associated learning curve characteristic of every Xilinx’s
software, developing a HLS based solution promises
significant shortening of the design cycle compared to a
manual HDL model [10][16][17]. 2) When learning how to

1 The 85K Logic Cells are equivalent to roughly 1.3M ASIC Gates
(using the conversion given by Xilinx: 1 Logic Cell = ~15 ASIC
Gates) [15].
2 Synthesis is the process by which a HDL language is translated into
a design implementation in terms of logic gates, so that the initial
model can be uploaded into and understood by an FPGA. Within the
Xilinx FPGAs, this corresponds to converting a HDL design into
configuration data, commonly called bitstream, to be loaded into the
FPGA.

manually generate HDL code, one has to learn a new
language, and not any common programming language such
as C. A HDL language paradigm is completely different and
software engineers must change their mindset: higher-level
computer languages are sequential in nature; HDL languages
are not. 3) It was a more natural first step for us, as software
engineers, and at the same time a way of checking the current
state of the semi-automatic HDL converters, which constitute
strong candidates of becoming the future (or maybe the
present already) of the HDL programming.
 In order to make our input hazard maps available to the PL
side of the ZedBoard, routines were developed to load the
maps from an SD card into the DDR3 RAM. Also, another
routine was created to dump the manipulated maps, as well as
the output map, into DDR and later into the SD card. These
routines, alongside the high-level ones created for controlling
the PL side, via the PS side, are never accounted for during the
timings or area estimations and are just hereby referred so that
the reader has some knowledge on how the data load and
dump to and from the FPGA was achieved.

C. Software

 The Xilinx design tools bundle constitute the software used
within this article. The bundle’s components consist in:
 Vivado HLS compiler that enables conversion of C, C++

and System C algorithms into a HDL language,
specifically into either Very High Speed Integrated
Circuits HDL (VHDL) or Verilog. It is intended for
accelerating Intellectual Property (IP) creation and allows
the user some level of abstraction while doing so. So as to
generate a good and efficient solution capable of
competing with a manual HDL design, the developer
needs to set various directives for the interfaces, loops and
other elements of the algorithm being converted and at the
same time he may need to restructure some parts of that
same algorithm in conversion. Even so, and taking into
account the steep learning curve related with the
comprehension of the wide range of options and
specifications, the program conversion delivers a solution
in much less time than the manual option [18].
It was with the use of this software that our C coded
algorithm’s modules were converted into VHDL.

 Vivado Design Suite is a program devised for the 7 series
FPGAs devices based on the formerly and discontinued
Integrated Synthesis Environment (ISE). It groups a wide
list of capabilities from which we highlight the ones used
in this article: a) design of the model’s structure with the
necessary IPs and its connections. It was in this phase that
the communication between the PS and PL sides was
implemented; b) simulator for the designed model; c)
synthesizer to generate the bitstream for the PL side; d)
integrated logic analyzer to debug the design by
monitoring the internal signals; e) area and timing
estimation tools; f) built-in strategies for route and place
optimizations.

 SDK is the Xilinx integrated design environment for
creating and debugging embedded applications on any of

REC 2016 31

Xilinx’ microprocessors. Its Graphical User Interface
(GUI) is based on Eclipse and it includes drivers and
libraries for all supported Xilinx hardware IPs. It was
within this software that the routines for loading and
dumping of the maps from and to the SD card
respectively as well as the high-level routines on the PS
side were programmed. Also, it allowed the programming
of the Vivado’s generated bitstream into the FPGA and
the connection via a terminal of the ZedBoard and a
computer in order to send/receive messages and controls
between each other.

 The version used for all the referred programs was the
2014.2 [19], whose license is sold alongside the ZedBoard
equipment.

IV. IMPLEMENTATION DETAILS
 The implementation of the algorithm’s modules inside
Vivado HLS, required some preliminary work, which can be
summarized as follows:

 Change in structure: A restructuring of some
modules’ sub-functions had to be made so that they
could be easily optimized.

 Interfaces: The modules’ interfaces were modified in
order to comply with the Advanced eXtensible
Interface3 (AXI4) protocol.

 Integer sizes: To save FPGA resources, modifications
were made to the size of integer variables in the C
modules using the “ap_cint.h” library of Vivado HLS
for C programming language. This allows the
definition of arbitrary precision integer data types.
E.g. if there is a variable always positive that
occupies a maximum of three bits, it would be wise
to define a type “uint3” (unsigned integer of three
bits) for that variable.

 Loops’ optimization: In nested loops, the approach
that generally obtains the best performance results is
to apply directives only to the innermost loops [10].
For that reason only two directives were applied to
the modules cycles: directive UNROLL was applied
to CYCLE3 – see pseudocode on section II - with a
factor equal to n, the number of input maps, which
basically corresponds to eliminating this loop and
instead having n simultaneous Data Preparations;
directive PIPELINE was applied to CYCLE2 – see
pseudocode on section II – with the minimum
Initiation Interval4 (II) possible which guarantees that
a next loop iteration can start before the current one
is finished.

 Sub-maps division: Due to the FPGA’s resources
limitations, the size of the matrices (images) to be
processed needs to be reduced. For example, if we

3 AXI is a protocol adopted by Xilinx for its IP cores to standardize
the interfaces. AXI4 is the second version of the protocol released in
2010 by Advanced Microcontroller Bus Architecture (AMBA).
4 Initiation Interval (II) is the number of clock cycles between the
start times of consecutive loop iterations.

had input hazard maps with size 1024x1024 it would
not be possible to process all the pixels at the same
time. The decision here was to process the initial
maps in blocks of sub-maps (or sub-matrices).
Several sub-matrix sizes in the range 32x32 to
1024x1024 were tested and the 256x256 was the one
achieving the best trade-off between performance and
utilized area. Thus, our inputs maps as well as the
output fused and normalized image were processed
by the modified modules as chunks of 256x256
pixels.

 After applying the referred steps, the modules were
converted into IPs of the automatic generated VHDL code to
be included in the next Xilinx tool in the workflow, Vivado
Design Suite.
 Within Vivado, the connections between the different IPs
and the PS one were made. Here, it is important to highlight
how the transfer of maps’ data from/to DDR3 to/from
modules’ newly generated IPs was made. Notice that those
transfer processes already count for the timings’ measurement,
i.e. in software they correspond to giving arguments to a
function as thus the interest is in having transfers’ velocities as
high as possible.
 The IP used to accomplish these transfers was AXI Direct
Memory Access (DMA) core [15]. This core is highly
customizable and the throughput obtained is dependent of that
– following the nomenclature on Xilinx’s reference guide, the
process by which the maps are passed from DDR3 memory to
the IPs is called Memory-Mapped to Stream (MM2S), while
the other direction of passing from IP into DDR3 memory is
called Stream to Memory-Mapped (S2MM). The best transfer
speeds that could be achieved within this process are:

o MM2S: 409 MB/s (Megabytes per second)
o S2MM: 387 MB/s (see note: 5)

 Another aspect within Vivado worth noting is that in the PS
core, the Acceleration Coherency Port (ACP) was enabled for
PS-PL connection. This port is enabled so that the hardware
manages the cache coherency. If not, “flushes” and
“invalidations” of cache ranges would be necessary after each
pointer to memory is assigned in Xilinx SDK, which is
runtime consuming.
 In the last tool of the workflow, Xilinx SDK, the performed
tasks did not have any particularity relevant enough to be
mentioned.

V. RESULTS
 The round of tests was carried out by taking as input five
512x512 floating-point pixel maps, each occupying 1 MB
when loaded into the DDR3 RAM. The first design model was
done by analyzing only the Data Preparation process as a kind

5 The explanation for why the S2MM velocity is lower than the
MM2S one is not linear and falls outside the scope of this article. For
that reason, let us just state that it is related with the Interrupt on
Complete (IOC) bit that is set differently on the MM2S and S2MM
transfers.

32 REC 2016

of first step towards the objective, while the second model
took into account both the Data Preparation and Aggregation
modules (details in Figure 2). Table 2 shows the percentage of
utilized PL resources in each round of tests.

 Total
available

Occupied
(%)

 Data

Preparation

Data

Preparation +

Aggregation

FF 106,400 24 34
LUT 53,200 46 68

Memory

LUT

17,400 9 10

BRAM 140 4 14
DSP48 220 52 63
BUFG 32 3 3

Table 2 – Percentage of utilized PL resources.

 As observed, the percentage of utilized resources for the
second model increases in all fields except for the clock
buffers (BUFG), which should in fact remain constant since
the same clocks were used in both models.
 Also, notice the 68% of used LUT and 63% of used DSP48
for the second model. These values are the result of dividing
the main input maps into sub-matrices, as referred in section
IV. Using the original input size of 512x512 and not the
256x256 chunks, this value would be well over 100%. As
explained before, the size of concurrent Data Preparations plus
Aggregations instances running in parallel greatly influences
the percentage of used LUTs and DSP48.
 Table 3 depicts the running times for both models in three
different proposed architectures: our FPGA design
implemented on the ZedBoard’s PL side, an Intel Core™ 2
Duo with 3.33 GHz, and running Linux Mint 17.1 and one
core of the ARM Cortex-A9 processors of the ZedBoard’s PS
side.
 For the FPGA design, the timing was calculated using a
100 MHz clock. In the other two architectures the runtime was
calculated using the function “clock_get_time()” given by the
C library “time.h” and using the clock
CPU_THREAD_CPUTIME_ID. This guarantees measuring
CPU time, consumed only by the thread in question and not
the relative CPU time i.e. it is not subject to any slowness
caused by other possible concurrent processor’s tasks.

 Running time (milliseconds)
 Data

Preparation

Data

Preparation +

Aggregation

ARM Cortex-A9 514 725

Intel Core™ 2

Duo 3.33 GHz

68 103

FPGA 13 27
Table 3 – Running time for the different architectures.

 Note that the runtimes shown in Table 3 are the average for
multiple runs of the same instance on each architecture and

that in both the ARM Cortex-A9 and the Intel Core™ 2 Duo
the modules were compiled using GNU Compiler Collection
(GCC) with –O3 optimization6.
 Looking at Table 3, it is clear that the timings for the FPGA
design were significantly better than those of other
architectures. For the first model, there was a decrease of
80.9% and 97.5% when comparing to the Intel Core™ 2 Duo
and to the ARM Cortex-A9 designs, respectively. In turn, the
second model showed that the FPGA design had a runtime
decrease of 73.8% when comparing to the Intel Core™ 2 Duo
results and of 96.3% if compared to the Cortex-A9. Further,
the second model FPGA design ran 3.81 and 26.85 times
faster than the design in the Intel Core™ 2 Duo and in the
Cortex-A9 respectively.
 In addition, considering that the ARM Cortex-A9 is running
the modules at a frequency of approximately 667 MHz, almost
seven times the frequency used in our FPGA design (100
MHz), and its performance is much slower, the benefits of
parallelization for performance are obvious.

VI. CONCLUSIONS
 Mastering a semi-automatic tool such as Vivado HLS to the
point where one generates HDL design solutions for FPGAs
capable of rivaling with hand-crafted ones is definitely not an
easy job. There is a steep learning curve in order to be
proficient in the tool and the tools are still somewhat buggy.
However, even with delays caused by the encountered bugs,
for a software engineer wanting to venture himself in the
FPGA world, the safe and natural first step is the semi-
automatic tool.
 Based on our experience on Vivado HLS and on our
knowledge about other existing tools – complemented by the
available research on today’s high-level synthesis tools’
overviews [21][22] – our opinion, as well as the general
consensus, on semi-automatic tools for converting C into HDL
is that they still have room for improvement but they already
constitute a valid option for software engineers who want to
see the benefits of converting some piece of software code
into hardware without needing to learn a new HDL language.
 This paper demonstrated that even non-experts in FPGAs
can, with some work, improve the performance of an image
manipulation and fusion algorithm with room for
parallelization, when aided by a semi-automatic tool like the
Vivado HLS.
 The constructed designs resulted in a solution that, in the
worst case scenario, displayed 3.81 and 26.85 times better
performance for the FPGA than for the Intel Core™ 2 Duo
and the ARM Cortex-A9 respectively. The objectives
proposed for this paper were therefore met.

6 GCC has a series of optimizations where –O3 is the most effective
one in terms of timing. It inlines some sub-functions and tries to
parallelize loops [20].

REC 2016 33

VII. FUTURE WORK
 The planned next step for this work is to compare the
differences between converting C into HDL with a semi-
automatic tool or manually. This will be done using the
percentage of utilized FPGA’s resources, timing and hours
spent on the making of each project. There are already some
articles and studies on this subject [18][23] but there is not yet
a general consensus on whether the results are always better
with the manual approach. Also, as the quality and
completeness of semi-automatic tools keep improving, new
studies on new tools or new tools’ versions may soon appear.
 Some effort has already been put into this subject with the
construction of the Aggregator module in VHDL. To develop
the HDL design, fixed-point operations and CORDIC core
[24][25] were used, to obtain trigonometric functions using
only additions, shifts and lookup tables. The overall results
were promising: the percentage of FPGA’s utilized resources
was considerably lower on the hand-crafted VHDL solution
versus the semi-automatic one. There was a decrease on the
percentage of utilized FFs from 6% to 4%, on the LUTs from
14% to 8% and on the DSP48s from 11% to 0% (11%
represents only 24 DSP48s); in turn, the performance of the
hand-crafted model was 1.19 times better.
 Another planned future work would be optimizing even
more the designs made with the help of Vivado HLS. This can
be achieved since Vivado HLS is a tool with so many features
and configurations that one can almost state: augmenting the
design time by a certain k factor is proportional to having a
solution k-times better optimized.

ACKNOWLEDGMENTS
 We want to thank Professor Luís Gomes and the
Department of Electrical and Computer Engineering for
providing the hardware for this work.
 This work was partially funded by FCT Strategic Program
UID/EEA/00066/203 of UNINOVA, CTS.

REFERENCES
[1] J. Hwang, B. Milne, N. Shirazi, and J. D. Stroomer,

‘System Level Tools for DSP in FPGAs’, in Field-

Programmable Logic and Applications, G. Brebner and
R. Woods, Eds. Springer Berlin Heidelberg, 2001, pp.
534–543.

[2] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross,
and M. Chawathe, ‘Accelerated image processing on
FPGAs’, IEEE Trans. Image Process., vol. 12, no. 12, pp.
1543–1551, Dec. 2003.

[3] R. W. Hartenstein, J. Becker, R. Kress, H. Reinig, and K.
Schmidt, ‘Reconfigurable machine for applications in
image and video compression’, Proc. SPIE - Int. Soc.

Opt. Eng., Feb. 1995.
[4] J. G. Eldredge and B. L. Hutchings, ‘RRANN: a

hardware implementation of the backpropagation
algorithm using reconfigurable FPGAs’, in , 1994 IEEE

International Conference on Neural Networks, 1994.

IEEE World Congress on Computational Intelligence,
1994, vol. 4, pp. 2097–2102 vol.4.

[5] S. R. Alam, P. K. Agarwal, M. C. Smith, J. S. Vetter, and
D. Caliga, ‘Using FPGA Devices to Accelerate
Biomolecular Simulations’, Computer, vol. 40, no. 3, pp.
66–73, Mar. 2007.

[6] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi,
‘Multisensor data fusion: A review of the state-of-the-
art’, Inf. Fusion, vol. 14, no. 1, pp. 28–44, Jan. 2013.

[7] C. Boudarias, P. Da-Cunha, R. Drai, L. F. Simões, and R.
A. Ribeiro, ‘Optimized and flexible multi-criteria
decision making for hazard avoidance’, Proc. 33rd Annu.

AAS Rocky Mt. Guid. Control Conf. Colo. USA Am.

Astronaut. Soc., 2010.
[8] L. F. Simões, B. Clément, and R. A. Ribeiro, ‘Real-Time

Planetary Landing Site Selection – A Non-Exhaustive
Approach’, Acta Futura, vol. 5, pp. 39–52, 2012.

[9] ‘ZedBoard’. [Online]. Available: http://zedboard.org/.
[Accessed: 15-Jan-2016].

[10] Xilinx, ‘Vivado Design Suite User Guide: High-Level
Synthesis (UG902- v2014.1)’. 2014.

[11] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, C.
Kitchen, C. W. Ad, R. Wain, I. Bush, M. Guest, M.
Deegan, I. Kozin, and C. Kitchen, ‘An overview of
FPGAs and FPGA programming; Initial experiences at
Daresbury.’, 2006.

[12] ‘Vivado High-Level Synthesis’. [Online]. Available:
http://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html. [Accessed: 29-
Jan-2016].

[13] R. A. Ribeiro, A. Falcão, A. Mora, and J. M. Fonseca,
‘FIF: A fuzzy information fusion algorithm based on
multi-criteria decision making’, Knowl.-Based Syst., vol.
58, pp. 23–32, 2014.

[14] T. J. Ross, Fuzzy Logic with Engineering Applications,
2nd Edition. Wiley, 2004.

[15] Xilinx, ‘AXI DMA v7.1: LogiCORE IP Product Guide
(PG021)’. 2015.

[16] F. Winterstein, S. Bayliss, and G. A. Constantinides,
‘High-level synthesis of dynamic data structures: A case
study using Vivado HLS’, 2013, pp. 362–365.

[17] D. Navarro, O. Lucia, L. A. Barragan, I. Urriza, and O.
Jimenez, ‘High-Level Synthesis for Accelerating the
FPGA Implementation of Computationally Demanding
Control Algorithms for Power Converters’, IEEE Trans.

Ind. Inform., vol. 9, no. 3, pp. 1371–1379, Aug. 2013.
[18] J. Xu, N. Subramanian, A. Alessio, and S. Hauck,

‘Impulse C vs. VHDL for Accelerating Tomographic
Reconstruction’, in 2010 18th IEEE Annual International

Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2010, pp. 171–174.
[19] ‘Vivado and SDK Standalone Web Install Client,

2014.2’. [Online]. Available:
http://www.xilinx.com/support/download/index.html/cont
ent/xilinx/en/downloadNav/vivado-design-tools/2014-
2.html. [Accessed: 29-Jan-2016].

34 REC 2016

[20] ‘Optimize Options - Using the GNU Compiler Collection
(GCC)’. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html. [Accessed: 15-Jan-2016].

[21] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D.
Stroobandt, ‘An overview of today’s high-level synthesis
tools’, Des. Autom. Embed. Syst., vol. 16, no. 3, pp. 31–
51, Sep. 2012.

[22] S. Sarkar, S. Dabral, P. K. Tiwari, and R. S. Mitra,
‘Lessons and Experiences with High-Level Synthesis’,
IEEE Des. Test Comput., vol. 26, no. 4, pp. 34–45, Jul.
2009.

[23] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers,
‘Optimized Generation of Data-Path from C Codes for

FPGAs’, in Proceedings of the Conference on Design,

Automation and Test in Europe - Volume 1, Washington,
DC, USA, 2005, pp. 112–117.

[24] R. Andraka, ‘A Survey of CORDIC Algorithms for
FPGA Based Computers’, in Proceedings of the 1998

ACM/SIGDA Sixth International Symposium on Field

Programmable Gate Arrays, New York, NY, USA, 1998,
pp. 191–200.

[25] ‘CORDIC core’. [Online]. Available:
http://opencores.org/project,cordic. [Accessed: 15-Jan-
2016].

REC 2016 35

36 REC 2016

Sessão Regular III

Controlo

Moderação: José Carlos Cardoso
Universidade de Trás-os-Montes e Alto Douro

37

38

Implementation and Tuning of PID Controllers Using FPAAs

Paulo J. R. Fonseca#, Ramiro S. Barbosa*

Dept. of Electrical Engineering
GECAD – Knowledge Engineering and Decision

Support Research Center
Institute of Engineering of Porto

Porto, Portugal
#1090038@isep.ipp.pt, *rsb@isep.ipp.pt

Abstract

This paper describes the implementation and

tuning of PID controllers using FPAA/dpASP
devices. The PID controllers are tuned using the
well-known Ziegler-Nichols heuristic rules. The
effectiveness of the proposed reconfigurable
technology is demonstrated by the good accordance
between the simulation results and the FPAA/dpASP
circuit responses.

1. Introduction

PID control represents about 90% of all
industrial control loops. The PID has been
thoroughly researched and is a well understood
algorithm. We can mention numerous analysis tools,
tuning techniques, and simulation tools available to
analyze and design PID controllers [1],[2],[3]. So,
there are good reasons to look for better design
methods or alternative controllers because of the
widespread use of these algorithms.

The emergence of dynamically reconfigurable
programmable analog circuits has been added to the
options available to control engineers. Field
Programmable Analog Arrays (FPAAs) and
dynamically programmed Analog Signal Processors
(dpASPs) can be used for that purpose. These
devices can be viewed as the analog equivalent of
the well-established FPGAs (Field Programmable
Gate Arrays), digital programmable devices.
FPAA/dpASP technologies provide an easy way to
implement analog circuits that can be reconfigurable
by programming tools from manufactures, and in
case of dpASPs are able to be dynamically
reconfigurable “on the fly”. Their use increases the
analog design integration and productivity, reducing
the development time and facilitating future
hardware reconfigurations reducing the costs. These

technologies are very recent and are in rapid
development to achieve a level of flexibility and
integration to penetrate more easily the market. The
applications of this technology are wide and include
signal conditioning, filtering, data acquisition, and
closed-loop control [4],[5],[6],[7],[8],[9],[10],[11],
[12],[13].

In this paper we design PID controllers using
FPAAs/dpASPs to control a benchmark typical
high-order plant transfer function. The plant model
is also implemented in a dpASP device. The tuning
of the PID controller is made by using the Ziegler-
Nichols (Z-N) heuristic rules. The performance of
the PID controlled system is assessed both in
simulations with MATLAB and with the simulator
of the development software tool of the
FPAA/dpASP devices.

The paper is organized as follows. Section 2
gives the fundamentals of reconfigurable analog
hardware FPAA/dpASP devices. Section 3 presents
the PID controller and the Z-N tuning rules. Section
4 shows one application example and comparative
results assessing the performance of the
FPAA/dpASP technology. Finally, section 5 gives
the main conclusions.

2. FPAA/DPASP Technology

In this work we use the Anadigm QuadApex
development board from Anadigm manufacturer
[14]. It is a platform to get started for implementing
and testing analog designs on the AnadigmApex
AN231E04 dpASP devices. Furthermore, with its 32
bit PIC32 microcontroller and four dpASP devices,
it provides a powerful platform to develop
programmable analog designs [15],[16].

The AnadigmApex represents the third
generation of FPAA/dpASP devices from Anadigm.
Two members of the AnadigmApex family are
AN131E04 and AN231E04 (Fig. 1). Both of these
devices provide seven analog I/O Cells and four

REC 2016 39978-989-704-110-5 © REC 2016

Configuration Analog Blocks (CABs) (Fig. 2).
These structures are constructed from a combination
of conventional switched-capacitor (SC) circuit
elements and are programmed from off-chip non-
volatile memory or by a host processor. Most of
analog signal processing occurs within the CABs
and is done with fully differential SC circuitry
[17],[18],[19]. The device processes analog signals
in their I/O Cells and mainly on the CABs that share
access to a single Look Up Table (LUT) which
offers a method of adjusting any programmable
element within the device in response to a signal or
time base. The LUT can also be used to implement
arbitrary input-to-output transfer functions such as
sensor linearization, generate arbitrary signals and
construct voltage dependent filtering. Analog signals
are routed in and out of the device core via the
available I/O cells. The SRAM based dpASP AN23x
devices are dynamically reconfigurable and their
behavior can be modified partially or completely
while operating. Hosted configuration is available
with either AN13x or AN23x devices. The real
potential of programmable analog however is best
leveraged when the host processor is also used to
generate and download new configuration data sets
on-the-fly as analog signal processing requirements
change. This dynamic reconfiguration is only
available on AN23x devices. The configuration
interface presents itself as either a serial data master
or serial data slave. As a serial data master, the
FPAA/dpASP can automatically retrieve its
configuration data set from any industry standard
SPI PROM attached. As a serial data slave, the
FPAA/dpASP is compatible with SPI signaling from
a host processor and can accept its configuration
data from that host [14],[15],[16],[20].

Fig. 1. Schematic of FPAA AN13x and dpASP AN23x.

Fig. 2. Block diagram of a CAB.

The software development tool is the
AnadigmDesigner®2 [21] (also provided by
Anadigm), which makes it possible to design the
desired circuit by using pre-defined blocks named
Configurable Analog Modules (CAMs) [22]. One of
the most important CAMs in our experiments is the
bilinear filter CAM. Its transfer function is:

 ௏௢௨௧(௦)
௏௜௡(௦)

= ± ଶగ௙బீ
௦ାଶగ௙బ

 

where ଴݂ is the corner frequency and ܩ the pass-
band gain. Figs. 3 and 4 show the circuit of bilinear
filter CAM and his configuration window from
AnadigmDesigner®2 software, respectively.

Fig. 3. Scheme of a bilinear filter CAM.

3. PID Controller and Tuning

3.1. dpASP Based PID Controllers

The block diagram of a typical PID controlled
system is illustrated in Fig. 5. The transfer function
of the PID controller is given by [1],[2]:

40 REC 2016

(ݏ)௖ܩ = ௎(௦)
ா(௦)

= ௣ܭ + ௄೔
௦

+ ௄೏௦
்೑௦ାଵ

 

where ܭ௣, ܭ௜ and ܭௗ are correspondingly the
proportional, integral and derivative gains to be
tuned. ௙ܶ is the time constant of the first-order low-
pass filter to limit the action of the differentiator.

As already mentioned, the PID controller is
realized on third generation FPAAs/dpASPs using
CAM modules available on AnadigmDesigner®2
CAM library. The proportional, integral and
differential actions of PID controller are
implemented by using the inverting gain, the
integrator and the differentiator CAMs, respectively.
The derivative bilinear filter CAM uses a corner
frequency of 50 Hz while the corner frequency of
the bilinear filters CAMs for the error and controller
output is 2 kHz. The complete PID controller CAM
scheme is reported in Fig. 6. Note that it was used
two dpASPs (FPAA1-PID and FPAA2-PID) due to
limited resources of a single device to accommodate
all necessary CAMs of the PID circuit.

Fig. 4. CAM configuration window.

Plant
yr



+

Kds
Tfs+1

Ki

s

Kp

Low pass Low pass+
e u

Gc(s)

PID

FilterFilter

Fig. 5. Feedback control system with PID controller.

Fig. 6. PID controller implementation using two dpASPs

AN231E04.

Furthermore, different applications usually
require different ranges to select K୮, K୧ and Kୢ
parameters of PID controller. However, the
differential time constant from differential CAM and
integration time constant from integration CAM is
limited to a range selected on AnadigmDesigner®2.
The implementation of gain stages on separate P, I
and D blocks gives more flexibility on the available
settings for the PID gains. Some cautions in terms of
noise and harmonics filtering are made, using
bilinear CAMs, especially due to noise on output of
differentiator and also harmonics on the
sum/difference output CAMs. The output of the
proportional and integrator blocks should be
monitored using probes during simulation as
saturation can occur easily after increase of K୮ or
 K୧. The half sum/difference CAM on second dpASP
(FPAA2-PID) has the function to sum the
proportional, integral and differential actions and a
small DC voltage that can be programmed in
conjunction in order to obtain very small DC output
value that in some circumstances can improve the
response of the PID controller. In the third
generation of Anadigm FPAA/dpASP, the saturation
is internally achieved at amplitude of approximately
3 V and should be considered that VMR level or
internal ground signal reference is 1.5 V. These
reference voltage levels should be considered during
simulation to avoid response errors during
implementation of the PID controllers.

3.2. Ziegler-Nichols Tuning

For tuning PID controllers, Ziegler and Nichols
suggested rules or heuristic methods based on
experimental dynamic responses of the process.
Ziegler-Nichols (Z-N) methods are also useful when
mathematical models of plants are not known. These
methods can, of course, also be applied to the design
of systems with known mathematical models. The
methods suggest a set of values of ܭ௣, ܭ௜ and ܭௗ,
that will give a stable operation of the system.
However, the resulting system may exhibit a large
maximum overshoot in the step response, which
may be unacceptable. In such a case it is necessary
to perform a series of fine tunings until an
acceptable result is obtained. In fact, the Z-N tuning
methods provide initial parameter values and it is a
starting point for fine tuning, rather than giving the
final settings for ܭ௣, ܭ௜ and ܭௗ of a PID controller
[1],[2],[3].

In the first method, the response of a plant to a
unit-step input is obtained experimentally or by
simulation. If the plant does not involve integrator(s)
or dominant complex-conjugate poles, then the unit-
step response curve may look S-shaped.

REC 2016 41

Fig. 7. Closed-loop PID controlled system with third-order plant transfer function.

In this way, the dynamics of the plant can be

described by a first-order transfer function with a
time delay, (ݏ)௉ܩ = ௦௅ି݁ܭ ݏܶ) + 1)⁄ , where ܭ is
the gain, ܮ the time delay and ܶ the time constant.
Ziegler and Nichols suggested to set the values of
 ௗ according the controller type andܭ ௜ andܭ ,௣ܭ
plant parameters (ܮ ,ܭ, ܶ) using tabulated formulas.
The controller parameters are designed to result in a
closed-loop step response transient with
approximately a quarter decay ratio [2],[3].

On second method, the ultimate sensitivity
method, the criteria for adjusting the parameters are
based on evaluating the amplitude and frequency of
the oscillations of the system at the limit of stability.
To use the method, the proportional gain is increased
until the system becomes marginally stable and
continuous oscillations just begin, with amplitude
limited by the saturation of the actuator. The
corresponding gain is defined as ܭ௨ (called the
ultimate gain) and the period of oscillation is ௨ܲ
(called the ultimate period). ௨ܲ should be measured
when the amplitude of oscillation is as small as
possible. Then, the tuning parameters ܭ௣, ܭ௜ and ܭௗ
are selected according controller type and plant
parameters (ܭ௨ , ௨ܲ) using tabulated formulas [2],[3].

4. Application Example

In this section we design PID controllers using
FPAA/dsASP devices to control one typical
industrial plant transfer function [23]. For that, the
adopted procedure is as follows:

 Model a dynamic system by a benchmark plant
transfer function on MATLAB and
AnadigmDesigner®2. Compare the results of
the open-loop step responses with both
methods.

 Test the PID controller in closed-loop with
plant transfer function on MATLAB and
AnadigmDesigner®2 using the Z-N tuning
methods.

 Compare the results of the closed-loop step
responses using the PID parameters from Z-N
tuning rules.

Consider the plant model given by the third-
order transfer function:

(ݏ)ܩ = ଵ
(௦ାଵ)య 

Fig. 7 shows the entire PID control circuit using
dpASPs. The first two dpASPs (FPAA1_PID and
FPAA2_PID) are used to implement the PID
controller in parallel form. The plant process (ݏ)ܩ is
implemented by the third dpASP
(FPAA_PROCESS) using in cascade three bilinear
filter CAMs.

Fig. 8 depicts the open-loop step response of
 on MATLAB and Anadigm Simulator when (ݏ)ܩ
applied a step input of amplitude of 1 V. The process
parameters are determined as
൫ܭ, ,ܮ ܶ൯ ≡ ൫1, 0.805, 3.69൯. Then, the PID gains
obtained from Z-N process reaction curve method
are ܭ௣ = 1.2ܶ ܮܭ =⁄ ௜ܭ ,5.50 = ௣ܭ ܮ2 =⁄ 3.42 and
ܮ௣ܭௗ=0.5ܭ = 2.22. Fig. 9 illustrates the closed-loop
step responses on MATLAB and Anadigm
Simulator when applied a step input of amplitude of
25 mV. As can be seen, the decay of oscillation is
near a quarter amplitude which is in accordance to
the Z-N rules. Also, both responses are very similar
in terms of steady-state and transient responses.
These results validate the plant transfer function
model implemented on dpASP.

42 REC 2016

Fig. 8. Open-loop step response of (ݏ)ܩ with MATLAB

(up) and Anadigm Simulator (down).

Fig. 9. Closed-loop step response with PID controller
tuned according Z-N process reaction curve method in

MATLAB (up) and Anadigm Simulator (down).

Next, we apply the Z-N ultimate sensitivity
method (or Z-N closed-loop method) as shown in
Fig. 10. The corresponding ultimate gain is
௨ܭ = 8 and the period of oscillation is ௨ܲ = 3.61 s.
Then, the calculated PID gains are ܭ௉=0.6ܭ௨ =4.8,
௜ܭ = ௣ܭ2 ௨ܲ = 2.66⁄ and ܭௗ = ௣ܭ ௨ܲ 8 = 2.17⁄ .
Figs. 11 and 12 illustrate the closed-loop step
responses correspondingly on MATLAB and
Anadigm Simulator when applied a step input of
amplitude of 25 mV. We observe again that the
decay ratio of oscillation is near a quarter amplitude
which is in accordance with the Z-N rules. Note that
the step responses on Anadigm Simulator and
MATLAB are very similar assessing the
performance of the controller and plant
implementations in analog reconfigurable hardware.

Fig. 10. Ultimate gain and period of oscillation on
MATLAB (up) and Anadigm Simulator (down).

Fig. 11. Closed-loop step response with PID parameters
tuned according to Z-N ultimate sensitivity method in

MATLAB.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

time (seconds)

A
m

pl
itu

de

x: 4.5
Y: 1

X: 0.81
Y: 0

Step Response

Time (seconds)

Am
pl

itu
de

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

System: Mc
Peak amplitude: 0.0379
Overshoot (%): 51.4
At time (seconds): 2.19

System: Mc
Time (seconds): 4.27
Amplitude: 0.018

System: Mc
Time (seconds): 6.36
Amplitude: 0.0288

System: Mc
Settling time (seconds): 13

System: Mc
Final value: 0.025

Step Response

Time (seconds)

A
m

pl
itu

de

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
System: Mc
Time (seconds): 2.12
Amplitude: 0.0415

System: Mc
Time (seconds): 5.73
Amplitude: 0.0415

Step Response

Time (seconds)

Am
pl

itu
de

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

System: Mc
Settling time (seconds): 9.4

System: Mc
Final value: 0.025

System: Mc
Peak amplitude: 0.0352
Overshoot (%): 40.8
At time (seconds): 2.18

System: Mc
Time (seconds): 4.38
Amplitude: 0.0208

System: Mc
Time (seconds): 6.62
Amplitude: 0.0267

REC 2016 43

Fig. 12. Closed-loop step response with PID parameters
tuned according to Z-N ultimate sensitivity method in

Anadigm Simulator.

5. Conclusions

The FPAA is a nice platform to design and
implement singled-loop PID controllers. The design
of PID controller can be done at block level,
simulate and test each circuit in few minutes without
need to do complex mathematical calculations,
choosing discrete components or focus on analog
circuit details. However, cautions in terms of
filtering should be considered during design,
especially due to noise on the output of differentiator
block and also harmonics on the sum/difference
output CAMs. Also, the output of proportional and
integrator blocks should be monitored using probes
during simulation as saturation can occur easily after
increase of proportional and integral gains.

It was described one application example of PID
tuning controller using the Z-N heuristic rules. The
obtained step responses using both methods show
the quarter decay amplitude between the first and
second oscillation which is in accordance with the
Z-N rules. The obtained results on Anadigm
simulator are very similar to those of MATLAB,
revealing the good performance of FPAA/dpASP
devices in implementing PID controlled systems.

References
[1] K.J. Åström and T. Hägglund, PID Controllers:

Theory, Design, and Tuning, Instrument Society of
America, North Carolina, 1995.

[2] G.F. Franklin, J.D. Powell, and A. Emami-Naeini,
Feedback Control of Dynamic Systems, Prentice-
Hall, New Jersey, 5th Edition, 2006.

[3] K. Ogata, Modern Control Engineering, Prentice-
Hall, 4th Edition, 2002.

[4] C. Schene, “Implementing process control with field
programmable analog arrays,” in Embed Systems
Conference, San Francisco, 2004.

[5] P. Falkowski and A Malcher, “Dynamically
programmable analog arrays in acoustic frequency
range signal processing,” Metrology and
Measurements Systems, vol. XVIII, pp. 77-90, 2011.

[6] S. Mahji, V. Kotwal, and U. Mehta, “FPAA-based PI
controller for servo position control system,” in IFAC
Conference on Advances in PID Control, Brescia,
Italy, March 28-30, 2012.

[7] A. Malcher and P. Falkowski, “Analog
reconfigurable circuits,” Intl. Journal of Electronics
and Telecommunications, vol. 60, pp. 15-26, 2014.

[8] W. Zhang and Y. Li, “A self-adapted PID system
based on intrinsic evolvable hardware,” in Proc. of
the Intl. MultiConf. on Engineers and Computers
Scientists, Hong Kong, March 19-21, 2008.

[9] P. Dong, G.L. Bilbro, and M-.Y Chow,
“Implementation of artificial neural network for real
time applications using field programmable analog
arrays,” in 2006 Intl. Joint Conference on Neural
Networks, Vancouver, BC, Canada, July 16-21, 2006.

[10] C.R.. Schlottmann and P.E. Hasler, “A high dense,
low power, programmable analog vector-matrix
multiplier: The FPAA implementation,” IEEE
Journal on Emerging and Selected Topics in Circuits
and Systems, vol 1, pp. 403-411, 2011.

[11] C.R. Schlottmann, C. Petre, and P.E. Hasler, “A high-
level simulink-based tool for FPAA configuration,”
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, pp. 10-18, 2012.

[12] D.A. Visan, I. Lita, and I.B. Cioc, "Temperature
control system based on adaptive PID algorithm
implemented in FPAA," in Proc. of the 2011 34th
Intl. Spring Seminar on Electronics Technology
(ISSE), Tratanska Lomnica, 2011, pp. 501-504.

[13] I. Lita, D.A. Visan, and I.B. Cioc, "FPAA based PID
controller with applications in the nuclear domain,"
2009 32nd International Spring Seminar on
Electronics Technology, Brno, 2009, pp. 1-4.

[14] Anadigm QuadApex Development Board,
UM231004-K001, Anadigm Inc. [Online]. Available:
http://www.anadigm.com/

[15] AnadigmApex dpASP Family User Manual, AN13x
series, AN23x series, UM000231-U001e, Anadigm
Inc. [Online]. Available: http://www.anadigm.com/

[16] AN231E04 Datasheet Rev 1.2, Anadigm Inc.
[Online]. Available: http://www.anadigm.com/
an231e04.asp

[17] S. Franco, Design With Operational Amplifiers And
Analog Integrated Circuits, McGraw-Hill Series in
Electrical and Computer Engineering, 1988.

[18] L.P. Huelsman, Active and Passive Analog Filter
Design: An Introduction, McGraw-Hill, 1993.

[19] Theory - Introduction to Switched Capacitor -
Anadigm tech. Switched Capacitor: Sampled Data
Systems, Anadigm Inc. [Online]. Available:
http://www.anadigm.com/_apps/BasicSC-tech.pdf

[20] App Note – 310 Application Note, “Addressing
Multiple FPAAs Using a SPI Interface,” Anadigm
Inc. [Online]. Available: http://www.anadigm.com.

[21] AnadigmDesigner®2 User Manual, Anadigm Inc.
[Online]. Availabe: http://www.anadigm.com.

[22] CAM documentation of AnadigmDesigner®2
development tool, Anadigm Inc. [Online]. Available:
http://www.anadigm.com.

[23] K.J. Åström and T. Hägglund, “Benchmark systems
for PID control,” in Proc. of IFAC Workshop on
Digital Control, Terrassa, Spain, 2000, pp. 165-166.

44 REC 2016

Control of a Temperature Peltier System with FPAAs

Paulo J. R. Fonseca#, Ramiro S. Barbosa*

Dept. of Electrical Engineering
GECAD – Knowledge Engineering and Decision

Support Research Center
Institute of Engineering of Porto

Porto, Portugal
#1090038@isep.ipp.pt, *rsb@isep.ipp.pt

Abstract

This paper describes a practical implementation

of a PID controlled system using FPAA/dpASP
technologies to control the temperature of a closed
chamber. The chamber has a cooling element
mounted on his top using a Peltier assembly module
and on each lateral face are installed silicon flexible
heaters for heating. Experimental results of the
cooling and heating processes of system are shown
to illustrate the effectiveness of the FPAA/dpASP
devices in temperature control applications.

1. Introduction

The emergence of dynamically reconfigurable
programmable analog circuits has been added to the
options available to control designers. Field
Programmable Analog Arrays (FPAAs) and
dynamically programmed Analog Signal Processors
(dpASPs) can be used for that purpose. These
devices can be viewed as the analog equivalent of
the well-established FPGAs (Field Programmable
Gate Arrays), digital programmable devices.
FPAAs/dpASPs technologies provide an easy way to
implement analog circuits that can be reconfigurable
by programming tools from manufactures, and in
case of dpASPs are able to be dynamically
reconfigurable “on the fly”. The use of these devices
increases the analog design integration and
productivity, reducing the development time and
facilitating future hardware reconfigurations
reducing the costs. These technologies are very
recent and are in rapid development to achieve a
level of flexibility and integration to penetrate more
easily the market. The applications of this
technology are wide and include signal conditioning,
filtering, data acquisition, and closed-loop control
[1],[2],[3],[4],[5],[6],[7]. Implementation of PID

controllers using FPAAs with application in
temperature control can be found in related works
[8],[9].

In this paper we describe the implementation of a
PID controller with dpASPs in a temperature control
application. The PID controller is responsible to
provide the control voltage to PWM generator, and
then the output PWM signal is applied to power
drivers of cooling process using an air to air Peltier
Thermoelectric Assembly and also for the heating
process using two flexible silicone heaters. The PID
controller is implemented using two dpASP devices.
Another dpASP generates the PWM control signals
to the power drivers of thermoelectric assembly
module as well to the power driver of silicone
flexible heaters. The whole system is based on using
analog reconfigurable hardware to control the
chamber temperature.

The paper is organized as follows. Section 2
presents the fundamentals of reconfigurable analog
hardware (FPAA/dpASP) devices. Section 3 outlines
the PID controlled temperature system while section
4 gives the details of the Peltier assembly module.
Section 5 describes the hardware used in the control
system. The experimental results are given in section
6. Finally, section 7 draws the main conclusions.

2. FPAA/dpASP Technology

The AnadigmApex represents the third
generation of FPAA/dpASP devices from Anadigm
[10],[11],[12]. Two members of the AnadigmApex
family are AN131E04 and AN231E04 (Fig. 1). Both
of these devices provide seven analog I/O Cells and
four Configurable Analog Blocks (CABs) (Fig. 2).
These structures are constructed from a combination
of conventional switched-capacitor (SC) circuit
elements and are programmed from off-chip non-
volatile memory or by a host processor. Most of
analog signal processing occurs within the CABs
and is done with fully differential SC circuitry

REC 2016 45978-989-704-110-5 © REC 2016

[13],[14]. The device processes analog signals in
their I/O Cells and mainly on the CABs that share
access to a single Look Up Table (LUT) which
offers a method of adjusting any programmable
element within the device in response to a signal or
time base. The LUT can also be used to implement
arbitrary input-to-output transfer functions such as
sensor linearization, generate arbitrary signals and
construct voltage dependent filtering. Analog signals
are routed in and out of the device core via the
available I/O cells. The SRAM based dpASP AN23x
devices are dynamically reconfigurable and their
behavior can be modified partially or completely
while operating. The FPAA AN13x family devices
are also SRAM based and can be reprogrammed as
many times as desired, however the device must
always first be reset before get a new configuration
data set. Hosted configuration is available with
either AN13x or AN23x devices. The real potential
of programmable analog however is best leveraged
when the host processor is also used to generate and
download new configuration data sets on-the-fly as
analog signal processing requirements change. This
dynamic reconfiguration is only available on AN23x
devices. The configuration interface presents itself
as either a serial data master or serial data slave. As
a serial data master, the FPAA/dpASP can
automatically retrieve its configuration data set from
any industry standard SPI PROM attached. As a
serial data slave, the FPAA/dpASP is compatible
with SPI signaling from a host processor and can
accept its configuration data from that host [11],
[12], [15].

In this work we use the Anadigm QuadApex
development board [10]. It is a platform to get
started for implementing and testing analog designs
on the AnadigmApex AN231E04 dpASP devices.
Furthermore, with its 32 bit PIC32 microcontroller
and four dpASP devices, it provides a powerful
platform to develop programmable analog designs
[11],[12].

The Anadigm software tool
AnadigmDesigner®2 [16] makes it possible to
design the desired circuit by using pre-defined
blocks named Configurable Analog Modules
(CAMs) [17], each of which can be used to
implement a range of analog functions. One of the
most important CAMs in our experiments is the
bilinear filter CAM that creates a single pole, in a
low-pass configuration. Its transfer function is:

 ௏௢௨௧(௦)
௏௜௡(௦)

= ± ଶగ௙బீ
௦ାଶగ௙బ

 

where ଴݂ is the corner frequency and ܩ the pass-
band gain. Fig. 3 shows the circuit of a bilinear filter
CAM.

Fig. 1. Schematic of FPAA AN13x and dpASP AN23x.

Fig. 2. Block diagram of a CAB.

Fig. 3. Scheme of a bilinear filter CAM.

46 REC 2016

3. PID Controller on FPAA/dpASP
Devices

The block diagram of the PID controlled system
used in this study is illustrated in Fig. 4. The transfer
function of a practical PID controller is given by
[18],[19]:

(ݏ)௖ܩ = ௎(௦)
ா(௦)

= ௣ܭ + ௄೔
௦

+ ௄೏௦
்೑௦ାଵ

 

where ܭ௣, ܭ௜ and ܭௗ are correspondingly the
proportional, integral and derivative gains to be
tuned. ௙ܶ is the filter time constant of the derivative
term.

The PID controller is implemented on third
generation of FPAA/dpASP technology using CAM
modules available on AnadigmDesigner®2 CAM
library. The proportional, integral and differential
actions of the PID controller are implemented by
using the inverting gain, the integrator and the
differentiator CAMs, respectively. The derivative
bilinear filter CAM uses a corner frequency of 50 Hz
while the corner frequency of the bilinear filters
CAMs for the error and controller output is 2 kHz.
The complete PID controller CAM scheme is
reported in Fig. 5. Note that it was used two dpASPs
(FPAA1-PID and FPAA2-PID) due to limited
resources of a single device to accommodate all
necessary CAMs of the PID analog circuit.

Plant
yr



+

Kds
Tfs+1

Ki

s

Kp

Low pass Low pass+
e u

Gc(s)

PID

FilterFilter

Fig. 4. Feedback control system with PID controller.

Fig. 5. PID controller implementation using two dpASPs

AN231E04.

Different applications usually require different
ranges to select the ܭ௣, ܭ௜ and ܭௗ parameters.
However, the differential time constant from
differential CAM and integration time constant from
integration CAM is limited to a range automatically
selected by AnadigmDesigner®2 based on chosen
system clock. The implementation of the gain stages

on separate P, I and D blocks gives more flexibility
on the available settings for the PID gain parameters.
Some cautions in terms of harmonics and noise
filtering are made, using bilinear CAMs, especially
due to noise on the output of differentiator and
harmonics on the sum/difference output CAMs. The
output of the proportional and integrator blocks
should be monitored using probes during simulation
as saturation can occur easily after increase of ܭ௣ or
 ௜. The half sum/difference CAM on second dpASPܭ
(FPAA2-PID) has the function to sum the
proportional, integral and differential actions as well
a small DC voltage that in some circumstances can
improve the response of the PID controller.

4. Thermoelectric Peltier Module

As already mentioned the plant is a hermetic
chamber with cooling element mounted on his top
using a Peltier effect assembly module and on each
internal lateral face a silicone flexible heating
element. Due to the fact that the use of Peltier
elements has advantage over compressed gas
refrigeration when cooling small applications, we
will put focus on this device technology [20].

This module is made of semiconductor-based
electronic components that functions as a small heat
pump. By applying a low voltage DC power source
to a thermoelectric cooler (TEC) module, heat will
be moved through the module from one side to the
other. One module face, therefore, will be cooled
while the opposite face simultaneously is heated. It
is important to note that this phenomenon may be
reversed when polarity of applied DC voltage is
changed [21].

On this application the module is used only for
cooling as the mechanical and thermoelectric
structures are designed only for that purpose. Fig. 6
illustrates a Peltier TEC with heat and cold side and
the Peltier assembly module used in this application
[22],[23].

Fig. 6. Peltier TEC with heat and cold side (up) and the

Peltier assembly module used in this application (down).

REC 2016 47

Fig. 7. Block diagram of the closed-loop temperature control system implemented on dpASP hardware.

5. FPAA/dpASP Temperature Control
Application

This section describes the hardware of a practical
control application that uses a PID controller on
dpASP devices to control the temperature of a
closed chamber with a thermoelectric Peltier
module.

5.1. General Description

Fig. 7 presents the general block diagram of the
closed-loop control system implemented on
hardware. The temperature chamber is hermetic
isolated with all faces constructed in acrylic.
Mounted on top, it is installed a thermoelectric
assembly element for cooling and on right and left
sides are installed silicon flexible heaters for
heating. On front side is inserted a thermocouple to
measure the actual value of temperature. Setting the
reference temperature, the error is the difference
between the measured value of temperature chamber
and the reference temperature. This error is applied
to the PID controller which output voltage control
signal to the PWM generator. These parts are
implemented on three FPAA/dpASPs. The output
PWM generator drives the PWM power driver for
the heaters or in case of cooling, drives the PWM
generator for the Peltier thermoelectric assembly
through a LC biquadratic low pass filter. The
chamber temperature is measured by a thermocouple
type K that is connected to a specialized signal
conditioning board. The analog interface for the
FPAAs/dpASPs is performed by analog input
interface board and output interface board with
optical transceiver isolation.

5.2. Temperature Signal Conditioning Board

A thermocouple is positioned inside temperature

chamber to measure temperature. This thermocouple
is connected to an analog output K-Type
Thermocouple Amplifier board that uses IC AD8495
for the signal conditioning. This circuit is shown in
Fig. 8. The output analog voltage from thermocouple
amplifier is then connected to channel two of the
input interface board as illustrated in Fig. 9. This
block gives a linear output voltage as function of the
measured temperature, ܸݐݑ݋ = 0.05ܶ(℃) + 1.25.

The output from input interface board is a
differential signal with appropriated amplitude to
connect to input channel of dpASP/FPAA. However,
the thermocouple board output voltage signal is half
attenuated on input interface board to avoid
saturation on highest temperatures and added VMR
of 1.5 V that corresponds to the internal reference
voltage of dpASP. The desired reference
temperature is selected by a precision potentiometer
connected to channel one of the analog input
interface board (Fig. 9).

Fig. 8. Analog output K-Type Thermocouple Amplifier

board with thermocouple [24].

48 REC 2016

Fig. 9. Temperature sensing block diagram.

5.3. FPAA/dpASP Control Circuit and PWM
Power Drivers

The PID with PWM generator is implemented on
Anadigm QuadApex board which has four
AN231E04 dpASPs. The PID controller is the main
component of the control system and is based on
design according to Fig. 4. It is implemented a PWM
module on a third FPAA connected in cascade that
receives the voltage output signal from PID
controller and generates the correspondent PWM
signal. The duty cycle is proportional to the input
voltage level received from PID controller. Then,
PWM generator will send the signal for each PWM
power driver board which has a H-bridge power
circuit able to provide PWM power signal to the
silicon flexible heaters [25] in case of heating
process or in case of cooling process give the PWM
power signal to the LC power filter of the Peltier
thermoelectric assembly module.

The LC filter converts the square wave power
signal coming from the PWM driver into a low
ripple DC (zero frequency) signal. As the square
wave is composed of an infinite sum of harmonics
(i.e., its Fourier series), then the implementation of
LC filters will remove all the harmonics except the
DC component, being the amplitude of the DC
component directly proportional to the duty cycle of
the PWM signal [26]. These filters are required,
because the thermal stress generated in the Peltier
material when applying fast transients can shorten its
life. The manufacturer recommends that Peltier
element should not have more than 10% of ripple.
Figs. 10 and 11 show the block diagrams of the
Peltier and heater power drives, respectively. The
POLOLU-HP Motor driver (18v15) 15 A [27] is
used for both Peltier and heater power drivers.

The complete circuits of the PID and PWM
generator on dpASPs for the heating and cooling
processes are shown in Fig. 12 and Fig. 13,

respectively. Note that the connections of the error
amplifier are inverted in both designs.

Fig. 10. Thermoelectric assembly power driver block

diagram.

Fig. 11. Heater power driver block diagram.

6. Experimental Results

The dynamic responses for the heating and
cooling temperature processes are obtained by PC
connected to a multi-meter with temperature data-
logger. It is applied a step of 24 V in both cases.
Figs. 14 and 15 show the setups and experimental
results of both experiments. As can be seen, the
process responses are very slow showing
nonlinearities, as expected in thermal processes.

REC 2016 49

Fig. 12. PID controller with PWM generator for the heating process.

Fig. 13. PID controller with PWM generator for the cooling process.

Fig. 14. Setup (up) and experimental response (down) of

the cooling process.

Fig. 15. Setup (up) and experimental response (down) of

the heating process.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

time (sec)

te
m

pe
ra

tu
re

 (º
C

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
20

25

30

35

40

45

50

55

60

65

70

time (sec)

te
m

pe
ra

tu
re

 (º
C

)

50 REC 2016

For the control of the system it was used a PI
controller, since the heating and cooling processes
are very slow in addition to the existence of
nonlinearities and noise. So, the derivative action is
omitted from the control. It was applied a simple
manual tuning method commonly used in the
industry. It can be described in two steps as follows:

 Set and increase the proportional gain until
get a small steady-state error;

 Set and increase, if necessary, the integral
gain to reduce or eliminate the steady-state
error.

Fig. 16 presents the system responses with PI
tuning method for different values of ܭ௣ and ܭ௜
parameters during the cooling process. The PI
parameters that give the best response (in terms of
rise time and steady-state error) are ܭ௣ = 70 and
௜ܭ = 20. Fig. 17 shows the process response for
several temperature setpoints during cooling
process. Fig. 18 illustrates the system responses with
PI tuning method for different values of ܭ௣ and ܭ௜
parameters during the heating process. The PI
parameters that give the best response (in terms of
rise time and steady-state error) are ܭ௣ = 30 and
௜ܭ = 20. Fig. 19 shows the process response for
several temperature setpoints during heating process.
We can conclude that the PI controller design used
for both heating and cooling processes fulfill the
control requirements of stabilizing temperature and
transient response behavior [28].

7. Conclusions

The PI controller implemented on dpASPs to
control the temperature chamber was tested with
success as proved by the response dynamic curves
obtained by the data-logger for different temperature
setpoints. It was applied a simple manual tuning
method but other methods could be also used like
heuristic techniques (e.g., Ziegler-Nichols or Cohen-
Coon rules) or optimal tuning.

The capabilities of dpASP used in the control
application shown flexibility being a fast method to
implement controllers. This is due to fact that it is
possible to do several simulations with different
settings and download “on the fly” new
configurations in few milliseconds without making
reset or modify the hardware which normally is time
consuming. On the other hand, it is still necessary to
implement external hardware to make the input and
output signal interface to the I/O pins which shown
some problems and concerns to avoid noise
injection, particularly on the input pins that affects
the response of the implemented models.

Fig. 16. Dynamic responses of system during tuning

method for the cooling process.

Fig. 17. System responses for different temperature

setpoints during cooling process.

Fig. 18. Dynamic responses of system during tuning

method for the heating process.

Fig. 19. System responses for different temperature

setpoints during heating process.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

time (sec)

te
m

pe
ra

tu
re

 (º
C

)

setpoint

Kp=20, Ki=0

Kp=30, Ki=0

Kp=50, Ki=0

Kp=70, Ki=0

Kp=70, Ki=10

Kp=70, Ki=20

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

time (sec)

te
m

pe
ra

tu
re

 (º
C

)

setpoint 10ºC
chamber temperature SP (10º)
setpoint 5ºC
chamber temperature SP (5ºC

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54
55

time (sec)

te
m

pe
ra

tu
re

 (s
ec

)

setpoint (50ºC)
Kp=6; Ki=0
Kp=15; Ki=0
Kp=30; Ki=0
Kp=30; Ki=10
Kp=30; Ki=20

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54
55

time (sec)

te
m

pe
ra

tu
re

 (º
C

)

setpoint 50ºC

chamber temperature SP (50ºC)

setpoint 40ºC

chamber temperature SP (40ºC)

setpoint 30ºC

chamber temperature SP (30ºC)

REC 2016 51

It is important to note, that it was necessary to do
always a previous model analysis using Anadigm
simulator to check the possible saturation on the
CAMs, especially on the proportional and integral
gain blocks, or to check the noise appearance on the
differential blocks and harmonics on output of the
half cycle sum/diff CAMS. To avoid this noise it
was necessary to filter the signals using bilinear
transfer functions configured with proper corner
frequencies. Also, it was necessary to use small
amplitude input signals to avoid saturation as third
generation AnadigmApex device supply voltage is
3 V and internal reference ground VMR is 1.5 V.

Future work developments could be done using
mixed technology of FPAA and FPGA
interconnected by SPI bus or ADC/DAC converters.
FPGA can implement the logic I/O control system
and the FPAA/dpASP can implement analog signal
system, signal processing and signal conditioning.
This mixed technology will implement the
equivalent system of a reconfigurable SOC. Usage
of dpASPs permits the easy replication of controllers
on same hardware which is a great advantage where
the design of fault tolerant control systems is
mandatory due to critical applications, as well in
conjunction with FPGAs to generate logic control.

References
[1] C. Schene, “Implementing process control with field

programmable analog arrays,” in Embed Systems
Conference, San Francisco, 2004.

[2] P. Falkowski and A Malcher, “Dynamically
programmable analog arrays in acoustic frequency
range signal processing,” Metrology and
Measurements Systems, vol. XVIII, pp. 77-90, 2011.

[3] S. Mahji, V. Kotwal, and U. Mehta, “FPAA-based PI
controller for servo position control system,” in IFAC
Conference on Advances in PID Control, Brescia,
Italy, March 28-30, 2012.

[4] A. Malcher and P. Falkowski, “Analog
reconfigurable circuits,” Intl. Journal of Electronics
and Telecommunications, vol. 60, pp. 15-26, 2014.

[5] W. Zhang and Y. Li, “A self-adapted PID system
based on intrinsic evolvable hardware,” in Proc. of
the Intl. MultiConf. on Engineers and Computers
Scientists, Hong Kong, March 19-21, 2008.

[6] P. Dong, G.L. Bilbro, and M-.Y Chow,
“Implementation of artificial neural network for real
time applications using field programmable analog
arrays,” in 2006 Intl. Joint Conference on Neural
Networks, Vancouver, BC, Canada, July 16-21, 2006.

[7] C.R.. Schlottmann, and P.E. Hasler, “A high dense,
low power, programmable analog vector-matrix
multiplier: The FPAA implementation,” IEEE
Journal on Emerging and Selected Topics in Circuits
and Systems, vol 1, pp. 403-411, 2011.

[8] D.A. Visan, I. Lita, and I.B. Cioc, "Temperature
control system based on adaptive PID algorithm
implemented in FPAA," in Proc. of the 2011 34th
Intl. Spring Seminar on Electronics Technology
(ISSE), Tratanska Lomnica, 2011, pp. 501-504.

[9] I. Lita, D.A. Visan, and I.B. Cioc, "FPAA based PID
controller with applications in the nuclear domain,"
2009 32nd International Spring Seminar on
Electronics Technology, Brno, 2009, pp. 1-4.

[10] Anadigm QuadApex Development Board,
UM231004-K001, Anadigm Inc. [Online]. Available:
http://www.anadigm.com/

[11] AnadigmApex dpASP Family User Manual, AN13x
series, AN23x series, UM000231-U001e, Anadigm
Inc. [Online]. Available: http://www.anadigm.com/

[12] AN231E04 Datasheet Rev 1.2, Anadigm Inc.
[Online]. Available:
http://www.anadigm.com/an231e04.asp

[13] S. Franco, Design With Operational Amplifiers And
Analog Integrated Circuits, McGraw-Hill Series in
Electrical and Computer Engineering, 1988.

[14] L.P. Huelsman, Active and Passive Analog Filter
Design: An Introduction, McGraw-Hill, 1993.

[15] App Note – 310 Application Note, “Addressing
Multiple FPAAs Using a SPI Interface,” Anadigm
Inc. [Online]. Available: http://www.anadigm.com.

[16] AnadigmDesigner®2 User Manual, Anadigm Inc.
[Online]. Availabe: http://www.anadigm.com.

[17] CAM documentation of AnadigmDesigner®2
development tool, Anadigm Inc. [Online]. Available:
http://www.anadigm.com.

[18] K.J. Åström and T. Hägglund, PID Controllers:
Theory, Design, and Tuning, Instrument Society of
America, North Carolina, 1995.

[19] G.F. Franklin, J.D. Powell, and A. Emami-Naeini,
Feedback Control of Dynamic Systems, Prentice-
Hall, New Jersey, 5th Edition, 2006.

[20] Thermoelectric Reference Guide, Ferrotec. [Online].
Available: https://thermal.ferrotec.com/technology/
thermoelectric-reference-guide/

[21] Tellurex manuals, Tellurex. [Online]. Available:
http://tellurex.com/products/manuals

[22] Thermoelectric assemblies, Laird Technologies.
[Online]. Available: http://www.lairdtech.com/
product-categories/thermal-management/
thermoelectric-assemblies

[23] AA PowerCool Series, AA-040-24-22,
Thermoelectric Assembly, Laird Technologies.
[Online]. Available: http://www.lairdtech.com/
products/AA-024-24-22-00-00

[24] Analog Output K-Type Thermocouple Amplifier -
AD8495 Breakout. [Online]. Available:
http://www.adafruit.com/products/1778

[25] Etched Foil Silicone heaters. [Online]. Available:
http://docs-europe.electrocomponents.com/
webdocs/0ebe/0900766b80ebefff.pdf

[26] Texas Instruments (February 2003) Application
Report SPRA873 - Thermoelectric Cooler Control
Using a TMS320F2812 DSP and a DRV592 Power
Amplifier. [Online]. Available:
http://www.ti.com/lit/an/spra873/spra873.pdf

[27] Pololu High-Power Motor Driver 18v15. Pololu
Electronics. [Online]. Available:
https://www.pololu.com/product/755

[28] P.J.R. Fonseca, “Controller implementation using
analog reconfigurable hardware (FPAA),” Master
thesis, Instituto Superior de Engenharia do Porto
(ISEP), Porto, Portugal, November 2015.

52 REC 2016

Sessão Regular IV

Aplicações de Processamento de Sinal

Moderação: João Agostinho Pavão
Universidade de Trás-os-Montes e Alto Douro

53

54

FPGA-Based Dynamic Partial Reconfiguration application
in Cognitive Radio Baseband Processing Systems

Mário Lopes Ferreira†, Amin Barahimi‡, João Canas Ferreira∗
†‡∗INESC TEC and †∗Faculty of Engineering of the University of Porto

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
mario.l.ferreira@inesctec.pt, amin.barahimi@inesctec.pt, jcf@fe.up.pt

Abstract

Cognitive Radio (CR) is envisioned as a solution for spec-
trum utilization concerns raised by the rapid development
of wireless communications. In turn, the Physical layer of
Cognitive Radio devices should be highly flexible and real-
time adaptable to support multiple communication stan-
dards and provide spectral agility in changing communi-
cation environments. Due to this requirements, FPGAs are
good candidate platforms to implement baseband proces-
sors for Cognitive Radio systems. In particular, this pa-
per focus on the application of Dynamic Partial Reconfigu-
ration (DPR) techniques in FPGA-based hardware infras-
tructures for CR baseband processing. First, an architec-
ture for a reconfigurable NC-OFDM baseband processor
is discussed and proposed. Then, the implementation of a
dynamically reconfigurable Fast Fourier Transform (FFT)
processor - one of the most important baseband operations
in wireless systems - is presented. DPR latency and power
consumption overhead were evaluated for the implemented
design and the obtained results stimulate the exploitation of
DPR techniques to implement flexible and adaptable hard-
ware components for CR devices.

1. Introduction

The sharp growth of wireless communications led to an
increasing service variety and high QoS user demands. To
follow this trend, the electromagnetic spectrum has to be
efficiently used and managed. However, large portions of
licensed spectrum are underutilized and cannot be accessed
by other users. Quite often, this situation turns spectrum
access a more critical problem than spectrum scarcity [1].
Cognitive Radio (CR) [2] has been proposed as a solution
to improve spectrum utilization and management by allow-
ing licensed but unoccupied spectrum bands to be used by
unlicensed users. Hence, CR is tightly coupled with Dy-
namic Spectrum Access (DSA) techniques and the concept
of spectrum pooling [3] - a mechanism through which spec-
tral resources from different owners are pooled and rented
to secondary users during idle periods. During the oper-
ation of a CR transceiver, these spectral resources com-
prise variable frequency bands during variable idle peri-
ods. This requires a CR device to be aware of its sur-
roundings and to adapt its internal operation accordingly.

Apart from extremely surpass previous cellular communi-
cation generations in terms of data rates, network latency,
energy consumption and system capacity requirements [4],
5G systems should be capable of supporting multiple wire-
less technologies and switching between them according
to the communication environment, in order to maximize
overall performance. Due to this, Badoi et al. [5] suggested
that the CR terminal “becomes the ideal 5G terminal can-
didate”. The flexible and adaptable nature of CR carries
interesting signal-processing challenges [6] and requires
agile Physical layer (PHY) architectures and waveform
techniques. Orthogonal Frequency Division Multiplexing
(OFDM)-based waveforms are strong candidates for CR
PHY implementation [7]. Particularly, a spectrally ag-
ile variant of OFDM called Non-Contiguous OFDM (NC-
OFDM) shows promising features for opportunistic wire-
less access [8] and dynamic spectrum aggregation [9]. In
the design of such baseband architectures, it would be con-
venient to bring together the flexibility and programma-
bility of software with the real-time performance of hard-
ware [10]. Offering a balanced trade-off between flexibil-
ity, throughput and power consumption, FPGAs are a good
platform to implement baseband processing engines for CR
devices. It is possible to handle the multiple baseband oper-
ation modes in CR devices by adopting a Velcro approach,
in which different datapaths are implemented on the FPGA
logic fabric and the input data is demultiplexed and driven
to the desired path. Yet, this strategy makes an inefficient
use of hardware resources, as only one datapath is used at
a time. Alternatively, SRAM-based FPGAs allow the em-
ployment of Dynamic Partial Reconfiguration (DPR) - the
reconfiguration of certain portions of the device while the
rest of the system continues to operate normally. DPR tech-
niques can provide superior system adaptability and com-
putational specialization to the nearly instantaneous appli-
cation demands [11], which are desirable features in CR
systems. However, the impact of DPR in terms if recon-
figuration time and power consumption overhead must be
evaluated in the context of the target application.

This paper intends to discuss the application of FPGA-
based DPR techniques in Cognitive Radio baseband pro-
cessors, by presenting a proposal for a reconfigurable NC-
OFDM baseband processor architecture and the implemen-
tation of a dynamically reconfigurable Fast Fourier Trans-
form (FFT) processor. For the implemented system, re-

REC 2016 55978-989-704-110-5 © REC 2016

configuration times and power overhead measurements are
presented. The obtained results encourage the use of DPR
techniques in hardware infrastructures for CR baseband
processing.

The rest of the paper is organized in the following way:
Section 2 reviews related work on Radio platforms using
DPR techniques; Section 3 proposed an architecture for
a reconfigurable NC-OFDM processor; Section 4 presents
a dynamically reconfigurable FFT processor implementa-
tion and evaluates DPR impact regarding reconfiguration
latency and power consumption; conclusions are drawn in
Section 5

2. Related Work

The applicability of Dynamic Partial Reconfiguration
in Cognitive Radio systems has been explored in several
research works. However, most of them draw the atten-
tion to specific implementation aspects like reconfigurable
synchronizers [12], FFT processors [13], coding or digital
modulation schemes [14]. Moreover, little emphasis is put
on he implementation dynamic spectrum aggregation tech-
niques.

A Digital Front-End and baseband processor architec-
ture for Software Defined Radio (SDR) transmitters was
presented by He et al. [15]. This work identifies common
features between several wireless standards and then aims
at an efficient hardware resource utilization by applying
Dynamic Reconfiguration techniques to change functional-
ity (Digital Modulation scheme, FFT size and cyclic prefix
length) and clock frequency at run-time.

Casado et al. [16] proposed an architecture for a recon-
figurable cognitive radio providing run-time reconfigura-
tion in the antenna, RF front-end and FPGA framework (IF
frequency generation and baseband processing). Although
this work focus more on the design of a reconfigurable an-
tenna, it shows another application of DPR in CR applica-
tions. Regarding the portion of the system implemented on
the the FPGA (Xilinx Virtex-6 board), it comprises base-
band processing, a DSA algorithm and a MicroBlaze pro-
cessor. The baseband processing tasks implemented are
QPSK modulation/demodulation, encoding/decoding and
Costas loop synchronization (in the receiver). The DSA
module implements a Energy Detection algorithm for free
frequencies detection and a Cyclostationary Features De-
tection algorithm to distinguish between primary user from
CR signals. In turn, the MicroBlaze processor is responsi-
ble for DPR management and generation of control signals
for both RF front-end and antenna. DPR is used to recon-
figure the digital frequency oscillator that generates IF fre-
quency, allowing small in-band frequency changes. So, the
baseband processing itself is static, since it does not sup-
port the variation of operation modes and parameters (e.g.
modulation scheme). Nevertheless, the authors mentioned
that DPR could also be employed in baseband processing
tasks. In the other hand, the baseband processing data path
has limited functionalities, as it does not support several
operations required by the most used wireless standards,
such as FFT/IFFT and channel equalization.

Exploring a hybrid FPGA platform (Xilinx Zynq) capa-
bilities, Shreejith et al. [17] presented a dynamic CR de-
sign which considers two conceptual planes: data plane
and control plane. The data plane is in charge of baseband
processing operations. As these tasks are usually quite de-
manding in terms of performance and computational com-
plexity, they are implemented in the FPGA logic fabric.
The control plane is responsible for cognitive tasks, that
is, either sensing the medium or retrieving and interpreting
external information, and triggering the baseband run-time
reconfiguration accordingly. To do so, an observe-decide-
act loop is implemented. Due to the need for high flex-
ibility and ease programmability, the control plane is im-
plemented in the ARM processor embedded on the Zynq
board. This approach considers two ways to reconfigure
the baseband processor: parametric and partial reconfigu-
ration. Parametric reconfiguration consists of using con-
trol signals to vary some operation parameters (e.g. code
rate) and is implemented through multiplex-based circuits.
This technique is suitable for small changes in the base-
band processing and do not physically modify the logic
blocks currently in use. When more significant hardware
changes are required, partial reconfiguration is employed.
The baseband processing data path is implemented in a Re-
configurable Region, so it is possible to perform DPR and
replace hardware within that region on-the-fly. To improve
system’s reactivity and mitigate reconfiguration times, the
authors use a custom reconfiguration manager called Zy-
CAP [18]. The baseband reconfiguration delay is 786µs for
a throughput of 380 MB/s. In spite of not covering relevant
CR features as spectrum agility, this approach is interesting
from a system architecture point of view and shows again
the applicability of DPR in CR baseband processing. How-
ever, the reconfiguration is implemented with a very coarse
granularity level, as the entire baseband processor is placed
in a single reconfigurable region.

3. Reconfigurable NC-OFDM Baseband Pro-
cessor Proposed Architecture

We have previously proposed an architecture for a re-
configurable FPGA-based NC-OFDM baseband proces-
sor [19]. The novelty of the proposed approach consists
in the exploration of innovative NC-OFDM hardware pro-
cessing architectures using partial run-time reconfiguration
of the system and providing on-line capability for design-
ing optimized waveforms employing custom modulations
for each NC-OFDM sub-band. The goal is to produce a
design meeting the requirements of next generation Cogni-
tive Radio devices in terms of multi-carrier, multi-standard
communications and spectral agility in changing environ-
ments. So, the flexible NC-OFDM transceiver should pro-
vide support for spectrum aggregation and run-time selec-
tion of modulation schemes and active sub-carriers. Such
a baseband processor also has to respect requirements in
terms of robustness, power consumption, throughput, flex-
ibility and adaptability. FPGAs will be the implemen-
tation platform adopted, as they provide a hybrid hard-

56 REC 2016

Management
Unit

Spectrum
Aggregation

DPR
Ctrl &

Manag.
Digital
Front-

End

&

RF
Domain

Dynamically Reconfigurable NC-OFDM Datapath

FPGA

Data OUT

Data IN

Communi-
cation

features

Spectrum
Sensing

NC-OFDM Baseband Processor

Upper
layers

Digital
Modulation

Digital
Demodulation

Subcarrier
Allocation

Subcarrier
Selection

IF
FTPAPR

Reduction

CP
Insertion

Channel
Equalization FF

T CP
Removal

Synchroni-
zation

M-QAM
M-PSK

White spaces
identification

Transform size,
streams

CP
duration

Figure 1. NC-OFDM baseband processor proposed architecture

ware/software framework based on a heterogeneous archi-
tecture that combines embedded general-purpose proces-
sors with custom parallel hardware accelerators. FPGAs
also provide support for dynamic partial reconfiguration
(DPR), the ability to dynamically modify portions of logic
while the rest of the device continues to operate without
interruption. This technique will be applied to the NC-
OFDM baseband processor, with the expectation to ben-
efit from its potential for hardware savings and execution
overhead reduction, and to achieve higher levels of sys-
tem adaptability, computation specialization and efficiency.
However, employing DPR remains an architectural chal-
lenge, as the system needs to maintain operation integrity
while being reconfigured. An additional challenge consists
in developing approaches to effectively mitigate the latency
and energy consumption introduced by the reconfiguration
process.

The proposed high-level architecture for the NC-OFDM
baseband processor (Figure 1) is composed of two do-
mains: Dynamically Reconfigurable NC-OFDM Datapath
and Management Unit. The Dynamically Reconfigurable
NC-OFDM Datapath consists of a modular pipeline of
computation blocks for NC-OFDM baseband processing,
whose operation can be reconfigured in run-time depend-
ing on the protocol or operation mode in use. The choice
of appropriate system partitioning and granularity level is
crucial for the success of DPR application. Hence, in the
context of the NC-OFDM baseband processor, the analysis
of datapath modules as well as the algorithms and architec-
tures to implement them is important. Then, based on this
analysis, opportunities for DPR should be identified. For
instance, non-contiguous spectrum aggregation requires a
multidimensional PHY layer, even when data aggregation

schemes are performed in the MAC layer [20]. A possible
approach to implement this multidimensional PHY would
be the implementation of a dynamically reconfigurable mo-
saic of PHY units that could be turned on/off based on the
system needs. The resources allocated to unused PHY units
could be reused for other system tasks. This strategy raises
some relevant challenges related with FPGA resources and
power budget management or parallel execution handling
of several PHY units in real-time. Another possible DPR
use case is the run-time customization of datapath modules
architecture to adapt the module according to real-time per-
formance requirements.

The Management Unit implements a reconfiguration
framework to intelligently manage the real-time adaptabil-
ity of the Dynamically Reconfigurable NC-OFDM Datap-
ath, while exploring methods to mitigate the overhead in-
troduced by DPR. This unit should be aware of the com-
munication context by using information (e.g.: spectrum
utilization and communication parameters) received from
higher protocol layers. It should also keep information
about the current hardware configuration and, when the
need for reconfiguration is detected, use that information
to figure out how different the next baseband configuration
will be. Based on that, the processing engine should take
a decision on which reconfiguration method is to be em-
ployed (partial reconfiguration, difference-based reconfigu-
ration, etc.). Additionally, the Management Unit should be
able to identify opportunities to optimize the reconfigura-
tion process through techniques like scheduling, bitstream
pre-fetching, compressing [21] and relocation [22].

REC 2016 57

DDR

Mem.

ICAPE2

DMA

Ctrl.

Stream 1

FPGA

core

DMA

Ctrl.

Stream 0

DMA

Ctrl.

ICAP

A
X
I
4
-
S

A
X
I
4
-
S

RP

1

RP

2

RP

3

RP

4

RP

5

RP

6

Reconfigurable FFT Processor

MicroBlaze

Soft

Processor

MIG

core

Figure 2. Reconfigurable FFT High-Level Architecture

4. Reconfigurable FFT Processor

One of the most important operations in wireless sys-
tems baseband processing is the Fast Fourier Transform
(FFT). The FFT operation is present in most of the
strongest waveform candidates for 5G, such as OFDM,
GFDM [23] and FBMC [24], and in crucial CR opera-
tions as spectrum sensing [25]. For OFDM systems, such
as NC-OFDM, signal modulation/demodulation is actually
performed through IFFT/FFT operations. Analysing FFT
requirements of widely used OFDM-based wireless sys-
tems, one can observe that the FFT size and number of
streams vary for different standards and modes of opera-
tion within a certain standard. In a communication chang-
ing environment, support for multiple FFT sizes could be
achieved by having an FFT processor to handle the largest
of all needed sizes. Larger FFT sizes require more hard-
ware resources and, as the largest FFT size would not be
permanently needed, this approach shows a poor resource
usage efficiency. Instead, an architecture providing special-
ized computation at run-time could improve resource usage
efficiency and potentially lead to power consumption sav-
ings. From our perspective, this scenario provides a good
opportunity to exploit and evaluate DPR application in the
context of CR systems, in particular NC-OFDM baseband
processors. From Figure 1 one realizes that there are other
baseband operations than FFT/IFFT in an NC-OFDM sys-
tem, but FFT is the most computationally complex. Thus,
a flexible, resource-efficient, power-aware and dynamically
reconfigurable FFT processor is a relevant contribution for
hardware infrastructures intended for CR systems. Such an
FFT processor was implemented [26] on a Xilinx Virtex-7
FPGA board (device: XC7VX485T-2FF1761C) running at
100MHz and supports throughputs and FFT sizes required
by most used wireless standards (such as IEEE 802.11,
WiMAX or 3GPP-LTE): powers-of-two from 64 to 2048
and 1536. Double-stream 64-point FFT, which is required
by some standards, is also supported. Both FFT input and

output vectors appear in natural order and the arithmetic
operations involve complex numbers whose real and imag-
inary parts are represented by 16-bit fixed-point values.

The Cooley-Tukey algorithm [27] was chosen to imple-
ment the FFT because it allows any factorization of the FFT
size - N - with an acceptable computational complexity.
As not all the supported FFT sizes are powers-of-two, the
Mixed-Radix-22/2/3 variant of the Cooley Tukey algorithm
was adopted. Mixed-Radix FFT algorithms are explained
in detail in [28]. A pipeline FFT architecture was selected
in this implementation. This category of FFT architectures
takes advantage of parallel execution potential provided by
hardware and shows a regular structure which is easy to
scale for variable FFT sizes. Furthermore, pipelined ar-
chitectures present simple control logic and allow for the
continuous flow of data, which is an important feature in
real-time applications like CR. Among the existing types
of pipelined architectures, Single Delay Feedback (SDF)
was selected due to its balance between memory require-
ments, throughput and implementation complexity. Cho et
al. [29] provide details about processing elements for SDF
FFT hardware implementations.

A schematic of the reconfigurable FFT high-level ar-
chitecture is shown in Figure 2. The system architec-
ture somehow resembles the proposed NC-OFDM base-
band processor architecture (Figure 1), in which two do-
mains were considered. In the implemented design, one
can consider the MicroBlaze Soft Processor and the Recon-
figurable FFT Processor as earlier versions of the Manage-
ment Unit and the Dynamically Reconfigurable Datapath,
respectively. The MicroBlaze is responsible for control-
ling the FFT dynamic reconfiguration by storing partial bit-
streams in the DDR memory and later fetching and send-
ing them to the FPGA configuration memory through the
Xilinx Internal Configuration Port (ICAPE2) primitive. In
turn, the Reconfigurable FFT Processor is where FFT com-
putation actually occurs. It comprises six Reconfigurable
Partitions (RPs) wrapped in an AXI4-Stream [30] IP core.

58 REC 2016

RP1 RP2 RP3 RP4 RP5 RP6
Slice LUTs 400 (0.13%) 2800 (0.92%) 2800 (0.92%) 1600 (0.53%) 1600 (0.53%) 2800 (0.92%)

Slice Registers 800 (0.13%) 5600 (0.92%) 5600 (0.97%) 3200 (0.53%) 3200 (0.53%) 5600 (0.92%)
BRAM 10 (0.97%) 10 (0.97%) 10 (0.97%) 10 (0.97%) 10 (0.97%) 10 (0.97%)

DSP 0 (0%) 40 (1.43%) 40 (1.43%) 20 (0.71%) 20 (0.71%) 40 (1.43%)
RM variants 7 3 3 5 4 4

Partial Bitstream
Max. size (KB) 67 201 183 123 125 211

Table 1. Resources per RP and partial bitstream sizes

Through DPR, the functionality of each RP is defined by
sending corresponding partial bitstreams to the FPGA port.
The number of RPs used and their functionality are differ-
ent from one FFT configuration to another. For example,
1536-FFT and 2048-FFT require the use of all six RPs,
whereas 64-FFT only requires three RPs, leaving another
3 RPs unused (blank). In the double-stream 64-FFT con-
figuration, those unused RPs are used to parallelly execute
another 64-FFT.

RP

1

RP

2

RP

3

RP

4

RP

5

RP

6

64-FFT

128-FFT

256-FFT

512-FFT

1024-FFT

1536-FFT

2048-FFT

Double-stream

64-FFT

BlankFFT computation

Figure 3. RPs role in each FFT configuration

Figure 3 shows, for every FFT configuration, how many
RPs are used and how they are interconnected. These in-
terconnection are included in the static part of the sys-
tem and are controlled by multiplexing circuits. Table 1
presents values for resource utilization and partial bitstream
sizes for each RP. Regarding the rest of the system (static
part) the resources used are: 37054 (12.20% of available)
slice LUTs, 29535 (4.86% of available) slice Registers, 168
(16.31% of available) BRAMs and 1 (0.04% of available)
DSP block.

FFT input/output values are fetched from/stored in the
DDR memory. To allow DDR access by the FFT core with-
out MicroBlaze control and achieve higher data through-
puts, Direct Memory Access (DMA) controllers for 32-
bit data transactions are employed. Two DMA controllers
are used by the FFT processor due to the double-stream
64-FFT configuration. In a similar way, reconfiguration
throughput is improved by using a dedicated 32-bit data

DMA controller to access the ICAPE2 primitive. All men-
tioned DMA controllers were implemented with Xilinx
AXI DMA IP cores and were connected to a Xilinx MIG
(Memory Interface Generator) block in charge of interfac-
ing the FPGA device and the DDR memory.

4.1. Results and Discussion

The functional correctness of all FFT configurations was
verified by comparing the FFT processor output results
with MATLAB simulation results. For a continuous flow
of received data, the FFT processor presents a throughput
of at least 88 Msamples/s, in pipeline steady-state opera-
tion. This throughput is smaller than the theoretical limit of
100 Msamples/s imposed by SDF architectures operating at
100MHz. The discrepancy between this limit and the ob-
served throughput is mainly due to the overhead caused by
DDR read/write accesses. However, the throughput of the
implemented FFT processor is large enough to cover the
requirements of standards like 3GPP-LTE, WiMAX and
IEEE 802.11.

DPR’s potential for improved resource usage efficiency
is demonstrated by the double-stream 64-FFT configura-
tion, where blank RP resources are reused to increment
system’s overall computation capacity. In the context of
an NC-OFDM transceiver, those resources could be used
to perform other baseband operations (e.g.: cyclic prefix
insertion, digital modulation/demodulation).

The impact of DPR regarding reconfiguration latency
was measured and the worst-case reconfiguration tme reg-
istered was 2.3 ms. The reconfiguration throughput ob-
served was about 377 MiB/s (94.25% of the the ICAPE2
limit for 32-bit data transfer at 100MHz). To evaluate the
feasibility of DPR in CR systems, the observed latency
was compared with reactivity time requirements defined
in IEEE 802.22 [31] - a Wireless Regional Area Network
(WRAN) wireless standard intended for communication in
CR scenarios. According to this standard, radio devices
should be able to perform operations such as communica-
tion establishment, closing or primary user detection within
2 s. Although a baseband processor may need to perform
reconfiguration procedures that affect other modules other
than FFT processor, the complexity and resource demands
of FFTs are higher than in most baseband modules. Thus,
we can conclude that DPR application in hardware infras-
tructures for CR systems is feasible.

Power consumption was also evaluated. A Texas In-

REC 2016 59

FFT
Config.

Idle regime
avg. output

power
(W)

Processing
regime avg.

output power
(W)

Power
difference

(W)

64-FFT 1.23 1.39 0.16
256-FFT 1.24 1.42 0.18
512-FFT 1.25 1.43 0.18

1024-FFT 1.26 1.48 0.22
1536-FFT 1.27 1.50 0.23
2048-FFT 1.28 1.52 0.24
64-FFT

double-stream 1.25 1.55 0.30

Table 2. Average output power measured for each
FFT configuration

struments (TI) USB Interface Adapter was connected to
the PMBus port on the Virtex-7 board and power measure-
ments were monitored through the TI Fusion Digital Power
Design software. In particular, the output power of the
power rail which feeds the XC7VX485T FPGA core with
a 1 V operating voltage was monitored. In the first power
experiment, two operation regimes were defined: Idle (no
FFT processing) and Processing (the FFT processor fetches
data from DDR, computes FFT and stores the results back
in DDR). For each configuration the FFT processor was
left 10 min in the Idle regime followed by 10 min in the
Processing regime. FPGA temperature was kept at 34 ◦C
during all experiments. Power measurements over time for
2048-FFT are plotted in Figure 4, where it is possible to
observe states and map them to the operation regimes ini-
tially defined. The averages for the output power in both
Idle and Processing regimes measured for each configura-
tion are presented in Table 2. From these results, one ob-
serves that power consumption is proportional to the num-
ber of RPs used for FFT computation. This may indicate
that better resource usage efficiency offered by DPR can
also lead to power savings. To assess this, a second power
experiment was done.

Figure 4. 2048-FFT measured power consumption

Two operation regimes were also considered: Idle
regime (no FFT processing) and Reconfiguration regime,
where the FFT processor is repeatedly reconfiguring be-

tween 64-FFT and 2048-FFT - this reconfiguration sce-
nario produces the largest reconfiguration latency observed
(2.3 ms). Power was measured considering the FFT pro-
cessor 10 min in Idle regime and 10 min in Reconfiguration
regime. Figure 5 shows the observed output power mea-
surements over time and, like in the first experiment, the
two operation regimes can be distinguished. No FFT pro-
cessing is performed in the Reconfiguration regime. So, the
increment in power is due to DPR activities. The average
output power is 1.22 W for the Idle regime and 1.26 W for
the Reconfiguration regime. Thus, the DPR power over-
head is about 40 mW. While performing FFT computation,
the difference between 2048-FFT and 64-FFT configura-
tions is 130 mW (Table 2). Employing DPR, this amount
of power can be saved at the cost of consuming 40 mW dur-
ing 2.3 ms - reconfiguration latency. So, if the time interval
between reconfigurations is significantly larger than the re-
configurations times, DPR can lead to power consumption
reduction.

Figure 5. Measurements for reconfiguration power
consumption

Considering IEEE 802.22 reactivity requirements and
assuming that the operation mode of radio devices will
remain unchanged for amounts of time much bigger than
reconfiguration times, power efficiency can be improved
through the application of DPR. This assumptions seem
to be quite reasonable in wireless communication environ-
ments.

5. Conclusions

Flexible wireless communications require reconfig-
urable baseband processing engines able to adapt its inter-
nal operation according to communication demands. In this
context, we proposed an architecture for an FPGA-based
NC-OFDM processor composed of a dynamically recon-
figurable baseband processing datapath and an intelligent
management unit responsible for the control and run-time
reconfiguration of the datapath, depending on communica-
tion requirements.

As the fisrt step towards the proposed NC-OFDM pro-
cessor, a dynamically reconfigurable FFT processor sup-
porting FFT sizes and throughputs required by most used
3G/4G standards was implemented on a Xilinx Virtex-7

60 REC 2016

FPGA. DPR techniques were exploited on this design, al-
lowing a more efficient use of available resources. Re-
configuration times and power consumption were measures
and their impact on CR environments was evaluated. The
largest reconfiguration latency observed was about 2.3 ms,
which is within a tolerable range for CR systems, and as-
sesses the viability of DPR in this kind of applications.
When compared with a worst-case and static hardware
implementation, DPR-based implementations can improve
power efficiency if radio device parameters, such as FFT
size, remain unchanged for time intervals many times big-
ger than reconfiguration times.

References

[1] FCC. Spectrum Policy Task Force. Technical Report Rep.
ET Docket no. 02-135, Federal Communications Commis-
sion, Nov. 2002.

[2] Joseph Mitola III. Cognitive Radio: An Integrated Agent
Architecture for Software Defined Radio. Doctor of tech-
nology, Royal Institute of Technology (KTH), Stockholm,
Sweden, 2000.

[3] T. A. Weiss and F. K. Jondral. Spectrum pooling: an inno-
vative strategy for the enhancement of spectrum efficiency.
IEEE Communications Magazine, 42(3):S8–14, Mar 2004.

[4] J.G. Andrews, S. Buzzi, Wan Choi, S.V. Hanly, A. Lozano,
A.C.K. Soong, and J.C. Zhang. What Will 5G Be? IEEE
Journal on Selected Areas in Communications, 32(6):1065–
1082, June 2014.

[5] Cornelia-Ionela Badoi, Neeli Prasad, Victor Croitoru, and
Ramjee Prasad. 5G Based on Cognitive Radio. Wireless
Personal Communications, 57(3):441–464, 2010.

[6] J. Ma, G. Y. Li, and B. H. Juang. Signal Processing in Cog-
nitive Radio. Proceedings of the IEEE, 97(5):805–823, May
2009.

[7] Z. Kollar and P. Horvath. Physical Layer Considerations
for Cognitive Radio: Modulation Techniques. In Vehicu-
lar Technology Conference (VTC Spring), 2011 IEEE 73rd,
pages 1–5, May 2011.

[8] H. Bogucka, Alexander M. Wyglinski, S. Pagadarai, and
A. Kliks. Spectrally agile multicarrier waveforms for oppor-
tunistic wireless access. IEEE Communications Magazine,
49(6):108–115, June 2011.

[9] H. Bogucka, P. Kryszkiewicz, and A. Kliks. Dynamic spec-
trum aggregation for future 5G communications. IEEE
Communications Magazine, 53(5):35–43, May 2015.

[10] J. Chacko, C. Sahin, D. Nguyen, D. Pfeil, N. Kandasamy,
and K. Dandekar. FPGA-based latency-insensitive OFDM
pipeline for wireless research. In High Performance Ex-
treme Computing Conference (HPEC), 2014 IEEE, pages
1–6, Sept 2014.

[11] R. Tessier, K. Pocek, and A. DeHon. Reconfigurable Com-
puting Architectures. Proceedings of the IEEE, 103(3):332–
354, March 2015.

[12] F. Shamani, R. Airoldi, T. Ahonen, and J. Nurmi. FPGA im-
plementation of a flexible synchronizer for cognitive radio
applications. In 2014 Conference on Design and Architec-
tures for Signal and Image Processing (DASIP), pages 1–8,
Oct 2014.

[13] C. Vennila, G. Lakshminarayanan, and Seok-Bum Ko. Dy-
namic Partial Reconfigurable FFT for OFDM Based Com-
munication Systems. Circuits, Systems, and Signal Process-
ing, 31(3):1049–1066, 2012.

[14] C. Vennila, K. Suresh, R. Rathor, G. Lakshminarayanan,
and Seok-Bum Ko. Dynamic partial reconfigurable adap-
tive transceiver for OFDM based cognitive radio. In 26th
Annual IEEE Canadian Conference on Electrical and Com-
puter Engineering (CCECE), 2013, pages 1–4, May 2013.

[15] Ke He, Louise Crockett, and Robert Stewart. Dynamic Re-
configuration Technologies Based on FPGA in Software De-
fined Radio System. Journal of Signal Processing Systems,
69(1):75–85, 2012.

[16] Félix Casado, Raúl Torrego, Pedro Rodrı́guez, Aitor Ar-
riola, and Iñaki Val. Reconfigurable Antenna and Dynamic
Spectrum Access Algorithm: Integration in a Cognitive Ra-
dio Platform for Reliable Communications. Journal of Sig-
nal Processing Systems, 78(3):267–274, 2015.

[17] S. Shreejith, B. Banarjee, K. Vipin, and S. A. Fahmy. Dy-
namic Cognitive Radios on the Xilinx Zynq Hybrid FPGA.
In Proceedings of the International Conference on Cognitive
Radio Oriented Wireless Networks (CROWNCOM), April
2015.

[18] K. Vipin and S.A. Fahmy. ZyCAP: Efficient Partial Recon-
figuration Management on the Xilinx Zynq. IEEE Embed-
ded Systems Letters, 6(3):41–44, Sept 2014.

[19] Mario Lopes Ferreira and Joao Canas Ferreira. Reconfig-
urable NC-OFDM Processor for 5G Communications. In
Embedded and Ubiquitous Computing (EUC), 2015 IEEE
13th International Conference on, pages 199–204, Oct
2015.

[20] Guangxiang Yuan, Xiang Zhang, Wenbo Wang, and Yang
Yang. Carrier aggregation for LTE-advanced mobile com-
munication systems. IEEE Communications Magazine,
48(2):88–93, February 2010.

[21] R. Bonamy, Hung-Manh Pham, Sebastien Pillement, and
D. Chillet. UPaRC - Ultra-fast power-aware reconfigura-
tion controller. In Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2012, pages 1373–1378, March
2012.

[22] R. Oomen, Tuan Nguyen, A. Kumar, and H. Corporaal.
An automated technique to generate relocatable partial bit-
streams for Xilinx FPGAs. In 2015 25th International
Conference on Field Programmable Logic and Applications
(FPL), pages 1–4, September 2015.

[23] G. Fettweis, M. Krondorf, and S. Bittner. GFDM - Gener-
alized Frequency Division Multiplexing. In IEEE 69th Ve-
hicular Technology Conference, 2009. VTC Spring 2009.,
pages 1–4, April 2009.

[24] O. Font-Bach, N. Bartzoudis, X. Mestre, D. Lopez-Bueno,
P. Mege, L. Martinod, V. Ringset, and T.A. Myrvoll. When
SDR meets a 5G candidate waveform : Agile use of frag-
mented spectrum and interference protection in PMR net-
works. IEEE Wireless Communications, 22(6):56–66, De-
cember 2015.

[25] Ahmed Elsokary, Peter Lohmiller, Václav Valenta, and Her-
mann Schumacher. A Hardware Prototype of a Flexi-
ble Spectrum Sensing Node for Smart Sensing Networks.
In Mark Weichold, Mounir Hamdi, Muhammad Zeeshan
Shakir, Mohamed Abdallah, George K. Karagiannidis, and
Muhammad Ismail, editors, Cognitive Radio Oriented Wire-
less Networks, number 156 in Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pages 391–404. Springer Inter-
national Publishing, April 2015. DOI: 10.1007/978-3-319-
24540-9 32.

[26] Mario Lopes Ferreira, Amin Barahimi, and Joao Canas Fer-
reira. Dynamic Reconfigurable FFT Processor for Flexible

REC 2016 61

OFDM Baseband Processing. accepted for publication in
DTIS’16, April 12-14, 2016, Istanbul, Turkey.

[27] James W. Cooley and John W. Tukey. An Algorithm for the
Machine Calculation of Complex Fourier Series. Mathemat-
ics of Computation, 19(90):297–301, 1965.

[28] U. Meyer-Baese. Digital Signal Processing with Field Pro-
grammable Gate Arrays. Signals and communication tech-
nology. Springer, 2004.

[29] Inkeun Cho, T. Patyk, D. Guevorkian, J. Takala, and S. Bhat-
tacharyya. Pipelined FFT for wireless communications sup-
porting 128-2048 / 1536 -point transforms. In 2013 IEEE
Global Conference on Signal and Information Processing
(GlobalSIP), pages 1242–1245, December 2013.

[30] Xilinx Inc. UG1037 - Vivado Design Suite: AXI Reference
Guide, June 2015.

[31] IEEE Std 802.22TM-2011: Standard for Local and
metropolitan area networks - Specific requirements - Part
22: Cognitive Wireless RAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications: Policies
and procedures for operation in the TV Bands, 2011.

62 REC 2016

A Wireless Biosignal Measurement System using a

Zynq SoC

Ricardo Joaquinito

Electronic System Design and Automation

INESC-ID/IST/ULisbon

Lisbon, Portugal

ricardo.joaquinito@tecnico.ulisboa.pt

Helena Sarmento

Electronic System Design and Automation

INESC-ID/IST/ULisbon

Lisbon, Portugal

helena.sarmento@tecnico.ulisboa.pt

Abstract—This paper presents a prototype for a wireless

biosignal measurement system, which explores the use of a SoC

FPGA device, the Zynq SoC, for the signal processing. In this

system, the body temperature and heart rate are monitored using

a steel-head thermistor and an electrocardiographic (ECG) signal

acquisition module, respectively. Analog signals from the sensors

are converted to digital format using an ADC component

integrated in the FPGA fabric of the Zynq. A Real-Time Operating

System runs on the Zynq’s ARM processor. The algorithm that

extracts the heart rate from the ECG signal is based on the Pan-

Tompkins algorithm for QRS complex detection and is partially

running on a core in the FPGA fabric, generated from C code using

the Vivado High Level Synthesis software. The measurements are

sent via Bluetooth Low Energy to a smartphone, where an

application shows the body temperature and heart rate to the user.

Keywords—biosignals; ECG; SoC FPGA; Zynq; Bluetooth Low

Energy

I. INTRODUCTION

 Human being’s physiological parameters are important
indicators of health. Recently, the measurement of these
parameters has gained notoriety in the consumer electronics
market, primarily through wearable devices like fitness bands
and smart-watches. Medical-grade wearables that can be worn
by patients at home are now in demand, but, in order to obtain
the medical grade, such devices must go through a rigorous
regulatory process which can take from 6 months to 2 years [1].
 The ease of reconfiguration and versatility of Systems-on-
Chip with Field Programmable Gate Array (SoC FPGA) have
been noted by the medical industry’s developers as a good
solution for this kind of equipment [1]. They are ideal for
developing embedded systems if processing with the aid of
custom hardware and regular system upgrades are desired.
 The electrocardiographic (ECG) signal is one of the
physiological signals that can be monitored by wearable devices
[2]. It can be used to keep track of the person’s heart rate and
detect cardiac problems and other health issues. A highly reliable
algorithm for these tasks can be computationally demanding and
has real-time constraints, so hardware solutions in FPGAs have
been proposed [3][4].
 Regarding wearable devices, consideration must be taken on
their energy consumption. New low energy wireless standards
have emerged in recent years aimed at this kind of devices.
Bluetooth Low Energy (BLE), an energy efficient variation of
the Bluetooth technology, is now the most widely used open
standard in that category, with predictions stating that, by 2018,
96% of all smartphones will support BLE [5].
 This work explores the use of a SoC FPGA device - the Zynq
SoC – with a BLE connection for the development of a wireless
biosignal measurement system, which can be the basis for a
wearable health-monitoring device. The heart rate is calculated
from the person’s ECG signal and the body temperature is also

measured. The heart rate detection algorithm is partially running
on custom hardware implemented in the FPGA fabric.

II. BACKGROUND

 This section briefly introduces the SoC FPGA device used in
this project and the ECG signal, including the processing
required for heart rate extraction.

A. Zynq SoC

 The Zynq-7000 Extensible Processing Platform [6], or

simply Zynq, is a family of SoC FPGA devices developed by

Xilinx, Inc. and introduced in 2011, which combine a dual-core

ARM Cortex-A9 processor and FPGA fabric. It is a well suited

and powerful platform for the development of embedded

systems, as it provides a flexible way to integrate hardware and

software.

 The general architecture of the Zynq comprises two parts: the

Processing System (PS) and the Programmable Logic (PL).

Simply put, the PS is related to the processor and software

development and the PL is related to the FPGA fabric and

hardware development. The two parts can be interfaced with

each other and with peripherals.

 Zynq projects can be entirely developed on Xilinx’s Vivado

Design Suite. It includes the Vivado Integrated Development

Environment (IDE) and the Software Development Kit (SDK),

which handle the hardware and the software design

respectively, and also the Vivado High Level Synthesis (HLS).

The HLS is able to generate hardware description code from

functions implemented in C, C++ or SystemC programming

language, which can then be exported as Intellectual Property

(IP) cores and implemented on Zynq’s PL.

B. The ECG signal

 Electrocardiography is the process of recording the electrical

activity of the heart using electrodes placed on a person’s body.

Although the most sophisticated 12-lead measurement systems

use as many as 10 electrodes, a simple configuration of only 2

or 3 electrodes is sufficient to acquire a person’s ECG signal.

 The ECG signal is a quasi-periodic repetition of the P wave,

the QRS complex and the T wave, as represented in Figure 1.

The correct detection of the QRS complexes is an important step

for heart rate measurement, as it is usually based on the intervals

between the R-peaks.

 The Pan-Tompkins algorithm [7] is one of the most notorious

algorithms for QRS complex detection. Basically, its main

processing steps are: (i) band-pass filtering, for noise removal;

(ii) differentiation, for slope analysis; (iii) squaring, to intensify

the slope response of the derivative; (iv) moving window

integration, to get the slope and width of the QRS complex. The

REC 2016 63978-989-704-110-5 © REC 2016

big slope changes that happen during the QRS complex produce

very high peaks in the derivative signal after squaring. The

squaring process also helps to avoid false detections on the T

wave, which in the original signal can reach an amplitude higher

than the R peak, but with a less accentuated slope. Thresholds

are used to detect the peaks and are adjusted periodically to

adapt to changing characteristics of the signal.

III. SYSTEM OVERVIEW

 Since the proposed system can be achieved with different

combinations of development boards and sensors in the market,

the general architecture of this system is introduced first with a

neutral view of the components, followed by a listing and short

description of the components used in the implemented

prototype.

A. General architecture

 The general architecture of the implemented system is

presented on Figure 2. Everything represented besides the

smartphone composes the sensing device which is to be worn

by a person.

 The ECG signal is extracted from a 2 or 3-electrode

configuration and is preprocessed before being converted to

digital format. The conditioning circuit filters the signal in order

to eliminate most of the noise that typically contaminates an

acquired ECG signal, and must amplify it since the captured

signal amplitude is in the order of microvolts (µV).

 The temperature sensor is a steel-head thermistor and its

conditioning circuit consists of a simple voltage divider that

reflects the sensor’s resistance changes with the temperature.

 In the SoC FPGA, the analog signals must be converted to

digital format by an Analog-to-Digital Converter (ADC). In

Figure 2, the ADC is shown as part of the FPGA fabric as there

is an ADC component included in this Zynq’s FPGA fabric. In

order to harness the hardware capabilities of this device, a part

of the processing algorithm is implemented in the FPGA.

 The BLE SoC handles the device’s BLE connection and

data transmission. It includes another less-powerful processor,

with firmware that implements the necessary BLE protocols,

and a radio transceiver. It receives the heart rate and

temperature from the SoC FPGA through a one-way UART

serial connection. Those values are received by a smartphone

connected to this device and shown on an application which

makes the user interface.

B. Prototype

The prototype developed for this project uses the following

development boards and sensors:

 ZYBO: A low-cost Zynq Development Board which

includes a Zynq-7010 SoC from Xilinx [6]. The

Zynq-7010 includes an ARM Cortex-A9 dual-core

processor and logic fabric based on the Artix-7 FPGA.

The processor has a maximum clock frequency of

650 MHz.

 BITalino ECG module with 3-electrode configuration:

A part of the BITalino development kit [7] that allows

ECG signal acquisition and conditioning, outputting an

analog signal.

 IM120628010: A steel-head NTC thermistor as the

temperature sensor.

 BLE Nano: A very small-scale BLE development board

featuring the Nordic nRF51822 SoC [8].

In the BITalino module, the signal captured by the ECG

electrodes is subjected to an amplification gain of 1100 and

filtering in the band 0.5 – 40 Hz, which raises the signal

amplitude significantly and eliminates most of the artifacts and

noise not associated with muscle.

IV. HARDWARE AND SOFTWARE DESIGN

 The most important aspects of the hardware used on the

Zynq’s PL, software running on the PS and the BLE connection

are covered in this section.

A. XADC

The Xilinx Analog-to-Digital Converter (XADC) is a dual

12-bit ADC included as a hard component in the PL of the Zynq

device, with a maximum sampling rate of a million samples per

second. It has an input range of 1 V (0 – 1 V).

In this project, the XADC is included in the hardware

system using the XADC Wizard core. The PS interfaces directly

with the XADC through the PS-XADC interface. Two channels

of the XADC are used to convert the analog signal from the

ECG and temperature sensors to digital format.

B. Operating System and application

The ARM processor runs a light Real-Time Operating

System (RTOS), the FreeRTOS [10]. This operating system

makes it possible to divide the application code into multiple

threads of execution, referred to as ‘tasks’, with an assigned

priority and execution period. With its preemptive multitasking,

it may put a task on hold to start the execution of a higher

priority task with time constraints. Only one core of the

processor is used.

Fig.1. Typical waveform of the PQRST interval on the ECG signal.

Fig. 2. General architecture of the proposed wireless biosignal

measurement system.

64 REC 2016

In this project, three tasks are implemented:

 ECGReadTask: Period of 10 ms; priority level 2

(highest). Acquires the ECG signal data from the

XADC, stores the ECG data in a buffer, stores the

difference between the new ECG value and the

previously acquired value in the ECG derivative buffer.

 ECGProcessingTask: Period of 100 ms; priority level

1. Executes the hardware part of the algorithm on the

HeartRateCalculator core to obtain the heart rate.

 TempRead&UARTTask: Period of 1 s; priority level 1.

Acquires the raw temperature data from the XADC,

converts it to Celsius, sends the latest temperature and

heart rate values through UART communication.

By making the SensorReadTask the highest priority task, it

is assured that the acquisition of ECG values from the XADC is

executed with precise intervals. This is important as this task

defines the application sampling rate of the ECG signal, which

is 100 Hz.

Figure 3 presents the flowchart of the application, divided

by the three tasks. It shows specifically which steps are

performed in the PS and the PL of the Zynq. Further detail on

the ECG processing is provided on Section V.

C. Heart Rate Calculator core

 This IP core was generated using the Vivado HLS, which

converted the C code implementation to VHDL and exported it

to the Vivado IDE. The core reads the ECG Derivative buffer

and outputs an integer with the heart rate value. It interfaces

with the PS using the AXI4-Lite protocol [11]. The software

driver for this core was automatically generated by the Vivado

SDK after its inclusion in the hardware project.

D. BLE Nano board and BLE communication

The nRF51822 SoC (referred to as nRF51 from here on) on

the BLE Nano board receives data from the Zynq through a

UART connection with baudrate 115200 bps. A string is sent

every second from the Zynq to the nRF51 with the latest

temperature and heart rate values. The nRF51 application will

interpret the string and put those values in the appropriate data

structures that will be transferred via BLE.

This BLE device is configured as a peripheral device, which

means that it must periodically advertise its availability for

connection to other central devices doing the scanning process.

Only the central device (the smartphone) is able to initiate the

connection. The advertising interval is set to 1 second.

The data transferred through BLE is encapsulated in

services, which are basically containers for conceptually related

information. The Bluetooth Special Interest Group defines

standard BLE services [12] that developers can freely use. This

device uses two of the standard services: the Heart Rate Service

(UUID: 0x180D) and the Health Thermometer Service (UUID:

0x1809).

When the BLE connection with the smartphone is initiated,

the relevant data values of the two services are updated and sent

to the smartphone every time a new string is received from the

Zynq. This means that the user will see the values updated once

every second on the smartphone application.

V. ECG SIGNAL PROCESSING

 The heart rate calculation relies on the detection of QRS

complexes on the ECG signal. The algorithm implemented in

this system is based on the Pan-Tompkins algorithm for QRS

complex detection, without the moving window integration

step.

 The processing begins outside of the Zynq, in the BITalino

ECG module, with the band-pass filtering in the band

0.5 – 40 Hz. In the Zynq, the analog signal is first of all

converted to a digital signal by the XADC. The sampling rate

of the signal is 100 Hz. This sampling rate complies with the

sampling theorem condition

 𝑓𝑠 > 2𝐵 

in which fs is the sampling rate and B is the bandwidth of the

signal to be sampled. In this situation, B is equal to

40 Hz because of the filtering performed by the BITalino ECG

module. It is also a sufficient sampling rate to obtain correct

QRS complex detections.

 For the real-time analysis of the ECG, two buffer arrays

with a size of 600 elements (the equivalent to 6 seconds of

signal data) are used to store elements of the type ecg_t, which

includes an integer value with the signal amplitude and an

unsigned integer time, a time stamp for the acquired sample.

One of the arrays, ECG_Buffer[], stores the acquired ECG

signal, for results and debugging purposes. The other buffer,

ECG_Deriv_Buffer[], is the square of the ECG signal derivative

(numerical differentiation), in which, for each element k,

𝐸𝐶𝐺_𝐷𝑒𝑟𝑖𝑣_𝐵𝑢𝑓𝑓𝑒𝑟[𝑘]. 𝑣𝑎𝑙𝑢𝑒 =
(𝐸𝐶𝐺_𝐵𝑢𝑓𝑓𝑒𝑟[𝑘 + 1]. 𝑣𝑎𝑙𝑢𝑒 − 𝐸𝐶𝐺_𝐵𝑢𝑓𝑓𝑒𝑟[𝑘]. 𝑣𝑎𝑙𝑢𝑒)2

 

When full, the buffers shift their elements to make way for new

samples.

 QRS complexes are detected by comparing the derivative

buffer with a threshold value, which is updated every 100 ms,

each time the ECGProcessingTask is executed. This threshold

is given by the formula

 𝑡ℎ𝑟𝑒 =
∑ 𝐸𝐶𝐺_𝐷𝑒𝑟𝑖𝑣_𝐵𝑢𝑓𝑓𝑒𝑟[𝑘].

𝑏𝑢𝑓𝑓𝑒𝑟_𝑠𝑖𝑧𝑒
𝑘=0 𝑣𝑎𝑙𝑢𝑒

𝑏𝑢𝑓𝑓𝑒𝑟_𝑠𝑖𝑧𝑒
× 𝐹 

in which F is a gain factor that the average of the ECG

derivative buffer is multiplied by.

 The values of the ECG derivative buffer are compared with

the threshold, from the earliest to the latest. When a value is

above the threshold, the corresponding time stamp is stored, and

Fig.3 Task division of the application running on the Zynq’s PS.

REC 2016 65

the buffer analysis skips the next 30 elements. This is because

some of the following buffer values, which are still responding

to a QRS complex’s fluctuations, will likely also be above the

threshold and must not be stored. Lastly, the intervals between

the QRS complexes detected in the buffer are averaged and

converted to beats per minute.

VI. TESTS AND RESULTS

 The resource utilization in the FPGA fabric for this prototype

is presented on Table 1. It includes the HeartRateCalculator

core and the I/O connections for the peripherals (sensors input

and UART output).

TABLE I. POST-IMPLEMENTATION RESOURCE UTILIZATION IN THE

FPGA FABRIC.

Resource Utilization Available Utilization (%)

LUT 1880 17600 10.38

LUTRAM 109 6000 1.82

FF 2232 35200 6.34

BRAM 2 60 3.33

DSP 6 80 7.50

IO 6 100 6.00

BUFG 1 32 3.12

 Tests were conducted to check the operating range of the

device, the temperature measurement and the ECG processing.

The sensor tests were performed on a 24 year-old male.

 A Sony Xperia V smartphone was used for the BLE

connection tests. The maximum distance at which the

smartphone could establish a connection with the device was

roughly 10 m, with obstacles. During a connection, the heart

rate and temperature values are successfully presented and

updated every second on the Android app developed for

demonstration.

 Figure 4 shows a 3-second plot of the ECG signal acquired

by the system, the corresponding squared derivative signal and

the designated threshold. The F factor from equation (3) is set

to 8 for the tests. The heart rate in this segment, as calculated by

the system, is 68 b.p.m.. The signal analysis shows that the

algorithm is able to avoid false QRS detections during the T

wave when its amplitude is superior to the R peak. The success

rate of QRS detection was 94.6% for multiple 1-minute tests.

 The accuracy of the temperature sensor was tested by

comparison with a digital thermometer with a precision of

0.1 ºC. Multiple tests to the armpit temperature after 2 minutes

of skin contact resulted in a maximum error of ± 0.4 ºC in

relation to the digital thermometer measurements, under the

same conditions. The values measured by our sensor were in the

range 36.4 ± 0.4 ºC.

VII. CONCLUSIONS

A wireless biosignal measurement system prototype for

heart rate and body temperature monitoring, that makes use of

the Zynq SoC and the Bluetooth Low Energy wireless

communication standard, has been implemented successfully.

The Zynq’s capabilities, as a SoC FPGA device that can be used

for hardware/software codesign, were explored with the use of

a custom IP core that runs part of the algorithm for heart rate

detection.

The tests show that the system is able to deliver reliable

heart rate and body temperature data in real-time to a user, with

a smartphone application. The algorithm that extracts the heart

rate, using a QRS detection method mostly based on the Pan-

Tompkins algorithm, delivers satisfactory results during the

tests.

ACKNOWLEDGMENTS

This work was supported by national funds through

Fundação para a Ciência e a Tecnologia (FCT) with reference

UID/CEC/50021/2013. The authors also express their gratitude

to Hugo Silva (PLUX - Wireless Biosignals S.A.) for kindly

providing us with a BITalino toolkit.

REFERENCES

[1] M. Santarini, “Xilinx Speeds Custom Medical Innovations to Market”, in
XCell Journal, no. 93, p. 9-13, 2015.

[2] M. Baig, H. Gholamhosseini and M. J. Connolly, "A comprehensive
survey of wearable and wireless ECG monitoring systems for older
adults", Medical Biological Engineering Computing, vol. 51, no. 5, May
2013 pp. 485-495, May 2013.

[3] D. Alhelal, K. A. I. Aboalayon, M. Daneshzand and M. Faezipour,
"FPGA-based denoising and beat detection of the ECG signal," Systems,
Applications and Technology Conference (LISAT), 2015 IEEE Long
Island, Farmingdale, NY, pp. 1-5, 2015.

[4] C. C. Chou, W. C. Fang and H. C. Huang, "A novel wireless biomedical
monitoring system with dedicated FPGA-based ECG processor,"
Consumer Electronics (ISCE), 2012 IEEE 16th International Symposium
on, Harrisburg, PA, pp. 1-4, 2012.

[5] M. Snow, “Developers wanted: Bluetooth Low Energy is the future of
wearables”, 2015. [Online]. Available:
http://www.broadcom.com/blog/ces/developers-wanted-bluetooth-low-
energy-is-the-future-of-wearables/ [Accessed: April 2016]

[6] Xilinx Inc., “Zynq-7000 All Programmable SoC Overview”, v1.9,
January 2016. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-
7000-Overview.pdf [Accessed: April 2016].

[7] J. Pan and W. J. Tompkins, "A Real-Time QRS Detection Algorithm," in
IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp.
230-236, March 1985.

[8] H. Silva, J. Guerreiro, A. Lourenço, A. Fred and R. Martins, “BITalino:
A novel hardware framework for physiological computing”, Proc
International Conf. Physiological Computing Systems – PhyCS, Lisbon,
Portugal, pp. 246-253, January 2014.

[9] Nordic Semiconductor, nRF51822 product webpage. [Online].
Available: https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-
Bluetooth-low-energy/nRF51822 [Accessed: April 2016].

[10] Real Time Engineers Ltd., FreeRTOS webpage. [Online]. Available:
http://www.freertos.org/ [Accessed: April 2016].

[11] Xilinx Inc., “Vivado Design Suite – AXI Reference Guide”, v3.0, June
2015. Available:
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref
_guide/latest/ug1037-vivado-axi-reference-guide.pdf [Accessed: April
2016].

[12] Bluetooth SIG, GATT Services webpage. [Online]. Available:
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx/
[Accessed: April 2016]

Fig.4 ECG signal acquired (top) and corresponding derivative signal and

threshold (bottom).

66 REC 2016

http://www.broadcom.com/blog/ces/developers-wanted-bluetooth-low-energy-is-the-future-of-wearables/
http://www.broadcom.com/blog/ces/developers-wanted-bluetooth-low-energy-is-the-future-of-wearables/
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
http://www.freertos.org/
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.freertos.org/
http://www.freertos.org/

A real-time underwater acoustic
direction finder in FPGA

José F. Valente
Faculty of Engineering, University of Porto

Porto, Portugal
Email: jfvalente@fe.up.pt

José C. Alves
Faculty of Engineering, University of Porto

INESC TEC
Porto, Portugal

Email: jca@fe.up.pt

Abstract—The automatic direction finding of an underwater
sound source has been extensively used in underwater passive
acoustic monitoring. The process consists in measuring the time
difference of arrival (TDOA) of a sound wave to two or more
hydrophones closely located and then extrapolating the relative
direction of the acoustic source based on the time differences.
Although the generalized cross-correlation between the received
signals is a common technique for determining the TDOA,
the underwater environment introduces several distortions in
amplitude and phase of the sound waves due to reflections and
the variation of the sound propagation speed with temperature,
pressure and salinity. Particularly in confined spaces, the high
level of reverberation makes the amplitude of the signals captured
by the hydrophones very dissimilar and because of this the
use of the cross-correlation is not effective to identify the time
difference of arrival. In this work we propose an alternative
method to calculate the TDOA consisting in the detection of
the beginning of the signals by discovering a series of zero-
crossing samples looking alike in each received signal, and then
calculating the time difference between them. This process has
been successfully implemented and tested in real-time in the
programmable logic (PL) part of a Zynq device. In this paper we
present the architecture of the system developed for calculating
the TDOA, using as transmitter a 35 kHz underwater acoustic
beacon and receiving the signal with two hydrophones sampled
at approximately 2MHz.

I. INTRODUCTION

Long endurance autonomous underwater vehicles (AUV),
like electric underwater gliders capable of undertaking multi-
month unassisted missions, suffer from the lack of real-time
communications with the outside world, while submerged in
remote ocean locations. In long range applications it may be
desirable to have real-time communications for retrieving data
or remotely changing the mission parameters. As acoustic
communications is the only practical mean to transmit data
underwater, this problem can be mitigated using a cooperative
autonomous surface vehicle (ASV) capable of following at the
surface the path of the submerged AUV and provide a relay
to satellite data networks [1]. This may be done by attaching
to the AUV a device transmitting a known acoustic signal and
calculating the direction of the sound wave relative to an array
of hydrophones, by measuring the time difference of arrival
(TDOA) of the sound wave to the different hydrophones. Using
only two hydrophones in a moving surface vehicle it is possible
to determine the direction of the received sound wave in two
dimensions and then extrapolate the relative position of the

submerged acoustic source by combining different direction
estimates along time.

In spite of being vulnerable to the uncertainty of the
sea and weather conditions, autonomous sailing boats [2]
are a type of surface vehicle with convenient characteristics
for such application, because they are capable of performing
oceanic operations during long periods of time. Having a better
navigation performance than a long endurance AUV, in terms
of speed and maneuverability, an autonomous sailing boat can
be programmed to actively sail convenient routes around an
uncertain position of an AUV for improving the estimation of
its location.

The time difference of arrival (TDOA) method has been
extensively used in passive acoustic source positioning by
measuring the time difference between signals arriving in two
or more hydrophones. In this work we propose an alterna-
tive and simple method to calculate the TDOA using two
hydrophones. Our approach consists in detecting the beginning
of the signals by discovering a series of zero-crossing samples
looking alike in each received signal, and then calculating
the time difference between them. This process requires a
computing effort much lower than other methods usually used
for this purpose, based on cross-correlation. We have built
a proof-of-concept prototype in a field-programmable SoC
(XILINX Zynq) that has been successfully validated with
laboratory experiments in a test tank.

II. RELATED WORK

One of the methods used for estimating the time differ-
ence of arrival (TDOA) is the generalized cross-correlation
(GCC) [3], [4]. Although being computationally intensive, this
process is widely used because it can weaken the impact of the
ambient noise on the accuracy of the lag estimation between
the two signals. The process consists in detecting the peak
time position of the cross-correlation function of two received
signals, representing the delay between them. Usually, the
signals are correlated in their significant whole duration, what
can be difficult to do in real-time on long duration signals
with high sampling frequencies and using low performance
computing systems, due to the heavy computational effort
needed. Besides, the propagation of acoustic signals through
the underwater acoustic channel introduces spectral distortions
and reverberation due to multi-path effects and variations in
the sound speed with depth, temperature and salinity. This

REC 2016 67978-989-704-110-5 © REC 2016

makes the signals received by two closely located hydrophones
very different from each other, especially in their amplitude
envelope when operating in confined regions, due to the high
level of reverberation. Figure 1 shows the beginning of the two
35 kHz signals recorded in a test tank, where the amplitude
envelope is very dissimilar and highly variable with small
displacements of the acoustic source. Because of this, the
cross-correlation method is not effective in such situations [5].

Fig. 1: The initial part of the two 35 kHz signals recorded in
experimental tests.

Based on these observations, we propose a new method to
estimate the TDOA of two received signals, not committed to
a signal frequency and duration, thus making possible to use
commercially available underwater acoustic beacons with long
autonomy of operation (typically months to years).

III. ESTIMATING THE TDOA

To determine the instant of arrival of the two signals and
then calculate the time difference between them, we focus in
accurately detecting only the very beginning of each received
signal, analyzing them in the time domain. We developed an
algorithm that continuously detects the zero-crossings of the
signal and measure the signal period as the time difference
between two consecutive zero-crossing in the same direction
(either rising or falling). A series of consecutive zeros oc-
curring within a predefined time interval (the expected signal
period), indicates the beginning of the received signal. After
detecting the instant of arrival of both signals, we further
analyze the signal samples closer to the first periods above
a decision threshold and measure the TDOA as the time
difference between them.

Figure 2 shows the initial part of the signals plotted in
figure 1 (top plot) and the series of values obtained as the
signals period, represented here as number of samples, by
measuring the time difference between two consecutive zero-
crossing samples occurring in the same direction (bottom
plot). Around 0.3ms the red signal (dash-dot) arrives and the
measured period starts to increase to its expected nominal value
(in this example equal to 56 samples). When a small number
of periods of both signals (typically between 10 and 20) are
detected above a threshold, the two signals are considered

as arrived. Then the sequence of periods calculated before
is analyzed to determine the instant of arrival of the two
signals. This is done by selecting the periods of each signal
below and above the threshold (two for each signal) and
calculating the difference between the time of arrival of the
most similar periods of each signal. Field experiments have
shown that using threshold values between 75% and 95%
of the nominal period, the TDOA results calculated match
the expected time delay for different angles. To increase the
robustness of the system, we have implemented four similar
modules, two working with the rising edge and the other two
with the falling edge, and applying different parameters to each
one: the period threshold and the number of periods above the
threshold required to consider the signal as received.

Fig. 2: Measuring the time difference of arrival of two signals.

Our system uses a 1.953MHz sampling frequency (result-
ing from dividing the main 125MHz clock signal by 64)
because this is the highest sampling rate supported by the
continuous recording process implemented in the RedPitaya
system. For the 35 kHz frequency of the acoustic source used
(approximately 4.24 cm underwater wavelength), the sampling
period (512 ns) corresponds to a distance traveled by the under-
water acoustic wave equal to 0.76mm. If the process described
above uses the time measurements as integer sampling periods,

68 REC 2016

that distance would translate to a theoretical minimum angle
resolution below 1◦, within direction angles in the range of
±43◦. However, calculating the time of zero-crossing with a
linear interpolation using the samples below and above zero,
will lead to values of the zero-crossing time as a fraction of
the sampling period. Although this will theoretically improve
the angle resolution with the number of fractional bits used
to represent time, the preliminary experimental results have
shown no relevant improvement in the accuracy of the angle
calculations with the increase of the time resolution.

To remove the low frequency components and most of
the background underwater noise due to ship activity, waves,
wind and rain, the input signals must pass through a high-
pass filter with a cut-off frequency adjusted to the frequency
of the acoustic source being tracked. This filter is presently
implemented in the digital platform as a 32-order FIR with a
cutoff frequency equal to 30 kHz, but could also be integrated
in the analog front-end.

IV. IMPLEMENTATION

We have implemented and tested a prototype for this TDOA
detector using as underwater acoustic source a commercial
acoustic beacon emitting a series of 35 kHz pulses lasting
12ms (EMT-01-3 from Sonotronics), two omnidirectional hy-
drophones (Aquarian H2a) separated by approximately 6cm
(1.5 signalwavelength), a custom designed analog front-end
with a variable gain amplifier and low-pass anti-aliasing filter-
ing and a FPGA-based (XILINX Zynq) single-board embedded
computer with a two channel high-speed ADC (RedPitaya [6]).
The real-time TDOA processing block was built mainly in
the programmable logic section and consists of four similar
modules for analyzing independently the rising and the falling
zero-crossings of the two input signals, using different config-
uration parameters. The four TDOA values are then read by
the embedded ARM processor to implementing a final voting
and filtering stage and provide the final TDOA estimate to
the surface vehicle application layer for computing the source
source direction.

A. Hardware platform

The digital platform used was the RedPitaya single board
computer, based on the XILINX Zynq 7010 programmable
SoC. Besides the usual on-board interfaces and devices re-
quired to run a Linux operating system, this board also includes
a dual high-speed ADC and a dual high-speed DAC, both capa-
ble of operating at 125Msps. This platform is usually sold as a
all-in-one laboratory instrument, providing the programmable
logic (PL) hardware interfaces and web applications that
implement an oscilloscope, an arbitrary function generator, a
spectrum analyzer and also a general purpose PID controller.
The hardware design for the PL section is provided as an open
source project for the XILINX Vivado design tool. A variant
of the initial hardware system also includes a DMA controller
that allows the continuous acquisition and recording of the two
analog input signals up to 2Msps.

To interface the hydrophones or high-impedance piezo-
electric acoustic transducers to the RedPitaya analog inputs,
we have developed an analog front-end daughter board im-
plementing two variable and digitally controllable amplifier

chains, followed by analog low-pass anti-aliasing filters with
a cutoff frequency set to approximately 250 kHz. This board
also includes a high-speed analog switch, allowing to multiplex
two additional analog signals by using a second amplifier and
filtering board. The amplifier chain includes a first stage which
gain was adjusted to 10× and an additional stage which gain
is programmed by I2C digital potentiometers from 0.1× to
2500×. Figure 3 shows the RedPitaya embedded computer
and the daughter board and figure 4 presents a simplified block
diagram of one amplifier and filtering analog path.

Fig. 3: The RedPitaya embedded computer (left) and the
analog frontend amplifier board (right).

Fig. 4: A simplified block diagram of the analog programmable
amplifier and filtering daughter board.

B. Digital implementation

The hardware system was based on the original design
included in the RedPitaya distribution, maintaining the parts
that implement the oscilloscope and the continuous signal
recording, and removing all the other unused modules to free
FPGA resources and facilitate the design optimization process
to reach the 125MHz main clock frequency. The input to the
module implementing the oscilloscope is taken from a config-
urable decimator module that reduces the sampling frequency
by factors equal to powers of two, which is used by the oscil-
loscope application to adjust the time-base. Maintaining this
function is very convenient for the debugging process when
performing field experiments, as analyzing the real signals
being captured by the acoustic sensors. To further improve
this feature, we have added a multiplexer at the input of the
oscilloscope datapath to be able to use that same circuit and
software application for observing other intermediate signals
in different points of the TDOA calculator.

The TDOA calculator is implemented with four blocks
shown in figure 5. Each block receives the signals of two

REC 2016 69

Fig. 5: Simplified block diagram of one TDOA calculator. Four
modules are instantiated with different parameters.

hydrophones (H0 and H1), after passing through a digital high-
pass filter with a cutoff frequency of 30 kHz to attenuate the
low frequency components. Then, a zero-crossing comparator
calculates continuously the time between two consecutive
transitions by zero in the same direction (the rising edge in
the block shown), representing the period in the input signal.
The sequence of periods of each signal is analyzed to detect Np
consecutive valid periods whose duration is above a threshold
Pth. This is the trigger event that indicates the start of that
signal. A finite state machine receives these trigger signals,
analyzes the sequence of periods calculated and drives the
delay calculator module that calculates the TDOA estimate
applying the method described above.

Four of these modules are instantiated with different con-
figuration parameters (Np and Pth) to produce 4 values for
TDOA. Two modules measure the signal period using the
rising edge and the other two use the falling edge. The four
TDOA estimates are then read by an application running in the
ARM embedded processor. This implements a filtering and
voting process and calculates a final TDOA as the average
of 2, 3 or 4 values read, after eliminating outlier results. This
value is then used to estimate the direction of the sound source
using the multilateration technique, which will be later used to
define convenient routes of the surface vehicle for determining
the location of the sound source.

The implementation in the Zynq 7010 programmable SoC,
maintaining the oscilloscope and the DMA interface for real-
time recording, occupies the FPGA resources shown in table I.
The high utilization of the DSP slices is due to the pipelined
implementation of the two high-pass FIR filters.

C. Experimental results

We have conducted a series of laboratory experiments in a
test tank to validate the algorithm implemented and tune the
parameters of the period calculator modules. The experiment
consisted in obtaining 200 TDOA measurements for each
of the 36 angles between −90◦ and −90◦ with a 5◦ step,
using the 35 kHz acoustic pinger positioned at 2.5m from
the hydrophones. Figure 6 shows the results obtained as a
cumulative percentage of the TDOA measurements considered
correct (within a ±10% interval from the theoretical value),
the values reported one period above and below the expected
(labeled as ”high” and ”low”, respectively) and the incorrect
results. Besides most of the measurements being correct, the
TDOA values differing one period above or below the correct
one can be further fixed by subtracting or adding one period,
taking into account the history of the previous readings.

TABLE I: FPGA resource usage (Zynq 7010).

Resource Occupancy
LUT 33% (5759)
FF 17% (6001)
BRAM 27% (16)
DSP48 83% (66)

Fig. 6: Summary of the TDOA results obtained in laboratory
experiments. The graphic shows the cumulative percentage of
TDOA measurements for angles between −90◦ to +90◦.

V. CONCLUSIONS

In this paper we have presented the implementation of
a calculator of the time difference of arrival (TDOA), as
part of an underwater direction finder of an acoustic source.
The system was implemented on a Zynq FPGA, receiving
in two hydrophones the acoustic signal transmitted by an
ultrasonic beacon. A simple mechanism based on the time
domain analysis of the zero-crossings of the two input signals
measure the relative time of arrival of the received signals.
Preliminary experiments realized in a test tank have shown
positive results, after tuning the configuration parameters used
for the 4 instances of the TDOA calculator. Next, we will
do a series of field experiments in different outdoor marine
environments, to characterize the accuracy of the TDOA
estimates, tune the configuration parameters and further refine
the algorithm.

REFERENCES

[1] G. Papadopoulos, M. F. Fallon, J. J. Leonard, and N. M. Patrikalakis,
“Cooperative localization of marine vehicles using nonlinear state es-
timation,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 4874–4879.

[2] J. C. Alves and N. A. Cruz, “Fast-an autonomous sailing platform for
oceanographic missions,” in OCEANS 2008. IEEE, 2008, pp. 1–7.

[3] J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room
acoustic environments: an overview,” EURASIP Journal on applied
signal processing, vol. 2006, pp. 170–170, 2006.

[4] S. Liu, C. Zhang, and Y. Huang, “Research on acoustic source localiza-
tion using time difference of arrival measurements,” in Measurement,
Information and Control (MIC), 2012 International Conference on,
vol. 1. IEEE, 2012, pp. 220–224.

[5] O. Le Bot, J. Mars, C. Gervaise, and Y. Simard, “Cross recurrence
plot analysis based method for tdoa estimation of underwater acoustic
signals,” in The sixth IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015, pp.
325–328.

[6] “Red pitaya board,” http://redpitaya.com, accessed: April 2016.

70 REC 2016

Sessão Regular V

Multiprocessamento

Moderação: José Carlos Alves
Fac. de Engenharia da Univ. do Porto / INESC Porto

71

72

An Implementation of MPI on FPGA for
Distributed Memory Multiprocessing

Francisco Pires
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
francisco.pires@tecnico.ulisboa.pt

Mário Véstias
INESC-ID, ISEL

Instituto Politécnico de Lisboa
mvestias@deetc.isel.pt

Horácio Neto
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
hcn@inesc-id.pt

Abstract—In the context of distributed memory processing
systems, this work presents an implementation of the Message
Passing Interface (MPI) using FPGA soft-processors. This imple-
mentation consists not only in a C library but also in the config-
ured FPGA hardware to support the communication between all
the processors. Considering the limitations of the target devices,
the low resource utilization is emphasized as well as the hardware
scalability and the software reliability. Experimental results with
several functions, including matrix-vector multiplication and
backward substitution, on a 8-processor architecture validate the
developed work and show that algorithms may be accelerated
with good performance efficiencies.

I. INTRODUCTION

Embedded computing applications have become very de-
manding over the years. In fact, a single core general-purpose
microprocessor may not achieve the desired performance when
running some specific algorithms, especially the ones with
real-time constraints. Since the development of single core pro-
cessors seems stagnated (the processor frequency has reached
a limit due to power consumption and thermal reasons) but the
number of transistors per chip increases every year, the multi-
processor approach is actually considered a viable solution to
improve the performance of the most demanding embedded
applications.

Multiprocessor Systems-on-Chip (MPSoCs) on Field Pro-
grammable Gate Arrays (FPGAs) exploit the parallelism of
multi-processors in order to achieve better algorithmic perfor-
mances for embedded systems.

Several studies and applications that solve these algorith-
mic problems using FPGA soft cores - or even heteroge-
neous systems with both soft and hard cores - have been
frequently discussed. In these works, the proposed goals are
frequently achieved but the application development cycle
is never separated from the hardware implementation. This
means that a software developer for these systems must also
know the features of a hardware implementation, spending
a considerable amount of his developing time writing low-
level code to the application he wants to develop. Therefore, a
lightweight version of the Message Passing Interface (MPI) [1]
standard programming model that abstracts the communication
between multiple soft processors on FPGA devices is proposed
in this work.

The MPI is usually used for data exchange in a paradigm
of distributed-memory high-processing computers. In fact, the
MPI has been considered by diverse authors the de facto

standard in this context for twenty years [2], [3]. The global
levels of adoption of this programming interface are an obvious
advantage since the embedded software developer does not
need to learn a new library specification. Furthermore, a large
amount of MPI applications, originally intended for clusters of
workstations or supercomputers, may be ported to embedded
systems using the implementation suggested here.

Since embedded systems are different from the usual
cluster and supercomputer systems that MPI aims for, the im-
plementation in this work approaches new questions regarding
the small use of resources and system portability. Also, the im-
plementation library must take into account the directives and
the prototypes determined by the MPI-Forum in order to not
confuse a software developer. Therefore, the main objectives of
the work presented in this document consisted in studying and
developing solutions that implement a low cost MPI interface
in distributed memory soft-processors, considering scalability
and resource utilization important constraints to be considered
in this proposal.

Section II provides a description of the Message Passing
Interface. The related work is described in section III. Section
IV describes the proposed massage passing interface hardware
and software implementation in FPGA. Section V describes
and analyzes the results of the proposed MPI architecture in
FPGA. Finally, section VI concludes the paper.

II. MESSAGE PASSING INTERFACE

The Message Passing Interface (MPI) was introduced in
1994 [1] to define a general library standard for parallel com-
munication systems. The MPI protocol considers more than
100 functions though the great majority of the programs only
use a small set of point-to-point and collective communication
functions. In fact, a basic set of MPI functions provides the
essential tools for the resolution of almost every parallelizable
problem, namely:

• MPI Init - the function where the entire MPI en-
vironment is started and important attributes, like
the number of processors and the ranking of each
processor, are set;

• MPI Comm size - return the number of processors to
the user;

• MPI Comm rank - return the rank to the user;

• MPI Finalize - shuts down the communication envi-
ronment;

REC 2016 73978-989-704-110-5 © REC 2016

Processor 0

MPI_Send

Target rank = 1
TAG = 2

Comm = MPI_COMM_WORLD

buffer

Processor 1

MPI_Receive

Target rank = 0
TAG = 2

Comm = MPI_COMM_WORLD

buffer

Fig. 1. Example of matched MPI message triples.

• MPI Send and MPI Recv - the core functions for the
data transferring between multiple processors.

The implementation of the send and receive functions could
adopt one of four different modes: the synchronous mode
where both processors (the sender and the receiver) handshake
and wait for each other to start the data transfer; the buffered
mode, where the sender processor writes the data on the buffer
and does not wait for the receiver to start the transfer; the
standard mode, where it is up to the MPI implementation
to determine whether the messages are buffered or not; and
the ready mode where the sending operation only works if a
receive request has been already posted.

Each MPI point-to-point function message is identified
by a (target processor rank, tag, communicator) triple. The
maximum value allowed for the rank is obviously related to
the number of processors executing the application while the
maximum tag value is defined by the implementation.

The communicator is a specific feature of the MPI standard
that sets the communication context within or between groups
of processors (intracommunicators and intercommunicators,
respectively). The MPI message triple defines whether an
MPI Send message request matches or not an MPI Recv
request. Since the packet arrive order on some type of network
is not deterministic, some message triples may arrive in
a different order than originally expected, causing eventual
matching problems. To solve this issue, the MPI standard
suggests the use of queue buffers for the unexpected messages
and pending receives (see figure 1).

Besides MPI Send and MPI Recv functions, collective
functions are also defined by the MPIForum. The collective
functions may be defined as facilities where multiple proces-
sors interact with each other using just a single function call.
The main advantage brought by the collective functions is
the less effort for the application developer to code certain
problems. For example, with the basic set, if one processor
wants to receive a data piece from every other processor and
accumulate all the values received in a local variable, the
application developer must call the MPI Send function on the
sender processors and implement a loop of MPI Recvs on
the root (receiver processor) where in each iteration the value
received is accumulated in a local variable. With collective
functions support, the application developer may simply call
the MPI Reduce function on every processor and all the
reduction work is done internally (see figure 2).

Anther important function is the MPI Barrier, used to
synchronize all processors belonging to the same context of
a communicator. Using just point-to-point MPI functions, the
implementation of synchronization would require a significant

send
buffer

send
buffer

send
buffer

send
buffer

rcv
buffer

SUM,
PROD,
MAX

Sender processors

Root processor

Fig. 2. MPI Reduce function.

effort from the MPI user. With a single call to the MPI Barrier,
the complexity of synchronization is abstracted from the user.

Depending on the MPI implementation, some collective
functions may have its internal code independent from the
point-to-point functions, dealing directly with a lower layer of
the software architecture. When these cases occur, the perfor-
mance of those collective calls is usually optimized. Hence, the
MPI user shall call, whenever possible, the collective functions
instead of working over the point to point functions.

III. RELATED WORK

Since the first MPI-1.0 reference document describing the
MPI interface, several implementations and extensions have
been proposed. While the majority of the implementations (like
the FT-MPI [4], LAM/MPI, MPICH [5] or the OpenMPI [6])
aimed the state-of-the workstations and supercomputer systems
running conventional operating systems, some work on MPI
implementations for embedded systems has also been made,
like the SCMP Multiprocessor [7].

Specifically on the FPGA field, some standard implemen-
tations for either a basic set of MPI functions or specific
collective communication functions may be found. Initially,
some implementations that intended to directly port the MPI
libraries from the standard workstation versions to the FPGA
systems (like the eMPI [8]) were presented. Their ports were
considered too heavy, especially when in comparison with
implementations designed specifically for the FPGA systems.

Other approaches did not port directly the MPI versions but
relied on operating system facilities, which is a big disadvan-
tage since many simple FPGA soft processors are not intended
to run with operating systems. The works presented by Gao
et al.[9], proposing specific hardware cores to accelerate the
MPI Barrier function, and by Brightwell et al.[10], suggesting
a new data structure to store and search more efficiently the
MPI communication requests, are important developments on
this topic.

Comparing with the implementation described in this pa-
per, the works presented by Williams et al. [11] and Saldaña
et al. [12] are the ones with the most similar objectives. In
Williams, a reduced set of the MPI standard is implemented

74 REC 2016

for multiple Microblazes (Xilinx FPGA soft processors) con-
nected to each other through Fast Simplex Links (FSLs).
The number of FSL interfaces in a Microblaze processor is
limited and, therefore, the system scalability is restricted to the
maximum number of eight Microblaze FSL interfaces. Actu-
ally, the Microblaze soft-processors are also compatible with
the AXI-Stream interfaces. Tailoring the system proposed by
Williams to AXI-Stream would extend the maximum number
of processors to 16. However, two memory elements (usually
organized in a FIFO fashion) are required for each pair of
linked Microblazes. Defining NP as the number of Microblaze
processors, the number of required memory elements for the
MPI communication structure, M, is given by NP × (NP −1).
A design with 16 processors would, therefore, require 240
memory elements. This means that this architecture may be
very memory demanding.

In [12] the problem of a limited number of processors is
solved by using a custom network-on-chip (NoC). The inter-
connects (designated NetInterfaces by the authors) may receive
an instruction from the receiver processor to select which
sending processor is preferred in situations of contention. The
eventual packets that arrive from other processors at the same
time of the dealt transfer are retained in FIFO memories until
the NetInferface is free. One memory element is needed per
interface of each NetInterface. Two memory elements are also
needed per Microblaze due to the FSL bidirectional interfaces
used. Since there is one NetInterface per processor the total
number of memory elements is NP × (NP − 1) + 2 × NP ,
requiring more memory elements than in the [11].

Saldaña also proposes a version where a hardware accelera-
tor engine is attached to each Microblaze in order to accelerate
the tasks of receiving, analyzing and storing communication
requests. This version requires three more memory elements
per accelerator: two FIFOs to exchange data with the NetInter-
faces and a queue memory to store unexpected MPI requests.
The new value of M is therefore NP × (NP − 1) + 5×NP .

Looking at these equations and analyzing the architectures,
it is clear that Saldaña’s architecture is more scalable but
it occupies much more memory and LUTs when compared
to the architecture suggested by Williams. To benchmark his
work, Saldaña implemented the Jacobi algorithm to solve
the heat equation. Using a group of both Microblaze and
PowerPC405 processors, maximum efficiency is achieved up
to 10 processors while the maximum speedup obtained is
around 27 using 40 processors. The authors justify the loss
of performance with the limitations of resources of the FPGA
device they used (Xilinx XC2VP100).

Over the years, Saldaña’s work focused on heterogeneous
systems where the FPGA soft-processors and specific hardware
engines are able to communicate with x86 hard processors
through MPI requests and data sent to a shared memory
[13]. Dedicated hardware implementations for the collective
MPI Bcast and MPI Reduce functions were also upgrades ver-
ified [14]. All these improvements made this MPI proposal in
a complete and efficient solution, however, all the intellectual
property (IP) cores implemented and all hardware used is too
heavy for medium and low-cost FPGA systems.

uBlaze 0 uBlaze 1 uBlaze N-1

Local
Memory

I
L
M
B

D
L
M
B

Local
Memory

I
L
M
B

D
L
M
B

Local
Memory

I
L
M
B

D
L
M
B

AXI-4 Interconnect

MAXI_DP MAXI_DP MAXI_DP

SAXI SAXI SAXI

R
A

M

C
o

n
tr

o
lle

r

SA
X

I

MAXI

Sh
a

re
d

R
A

M
P

or
t

A
Po

rt
 B

Fig. 3. Generic hardware architecture used to implement the MPI software.

IV. HARDWARE AND SOFTWARE DESIGN OF THE
DISTRIBUTED MEMORY MULTI-PROCESSING SYSTEM

In the following sections, we describe the proposed multi-
processing architecture and the design of the software MPI
routines over this architecture.

A. Hardware Design of the Multi-Processing Architecture

Since the target is a Xilinx FPGA, the Microblaze soft-
processor was chosen as the processing core of the architec-
ture. Microblaze is compatible with the standard C language
libraries, do not take an excessive LUT area (allowing im-
plementations on very low-cost FPGA devices) and provide
interfaces compatible with the required protocols (AXI-4 and
AXI-Stream) for efficient external communication.

The architecture defined to link all the processors consists
in using an AXI-4 Interconnect that allows all the processors
to access a shared RAM memory. It’s important to note that
this AXI RAM memory is only used for the MPI functions,
each soft-processor remains with their local BRAM memories
to store the application code, heap and stack (see figure 3).

Instead of using a shared memory, a system where all the
processors were linked through AXI-Streams was also consid-
ered. In this case, the number of memory resources needed was
considered too high, as can be seen in the related work section.
The high resource requirements are even more evident when
a custom NoC is implemented and an interconnect is needed
for each processor.

Following with the shared RAM architecture, some hard-
ware cores with the objective to accelerate the asynchronous
point-to-point MPI communication functions were considered
(the processors could execute some portion of computational
work while these engines would send and receive data). After
some experiments, it was concluded that these cores had an
excessively complex computing work accessing and processing
the BRAM memory. In addition, the resources to implement
this structure would limit the scalability of the system (it would
take a considerable LUT space and would require at least two
additional FIFO memories per processor).

REC 2016 75

Default MPI Functions

MPI_Send, PI_Recv,
MPI_Bcast, MPI_Barrier

RAM Memory Read and Write
Primitives

Peripheral access inst ructions

Fig. 4. Software stack of developed library.

The AXI-4 Interconnect, optionally, provides FIFO buffers
to accelerate burst transfers. Since the burst mode is not
compatible with the AXI DP interface used by the Microblazes,
this shared memory architecture only needs one memory
element (M = 1) to implement the communication structure of
a fully working MPI library. An AXI Interconnect has a limit
of 16 slave interfaces. Thus, when more than 16 processors
are inserted, a second AXI-Interconnect level must be inserted.
This fact does not have a big impact in the resource utilization
since an AXI-Interconnect takes much fewer LUTs than a
Microblaze processor.

B. Software Design of MPI Functions

Since we are targeting embedded system devices that may
have very scarce resources, the software design had to take
into account the space that the own code occupies focusing
only on the essential MPI features. The final size of the
developed MPI code was, therefore, around 20 kB (actual
workstation implementations occupy about 100 MB). The
developed library for the C programming language is organized
according to a layered approach (see figure 4).

While the point-to-point MPI Send and MPI Recv func-
tions and the optimized collective MPI Bcast and MPI Barrier
functions were built directly over the BRAM memory access
macros, the other MPI functions were developed on a higher
level abstraction. Therefore, these functions call the lower level
MPI functions instead of directly calling the BRAM memory
read and write macros. This layer structure eases the system
portability and future software improvements.

Another important point of this software implementation is
the way how the data stored in the shared BRAM is organized
and how that memory organization can be related to the MPI
communication modes defined by the MPI-Forum. Considering
that NP processors are being used, the software logically
divides the memory in NP × (NP − 1) blocks, each one
consisting in the communication zone for a combination of
two processors: a sender and a receiver (see figure 5).

The logical division by blocks eases the search process
since multiple processors are trying to read and write in the
same memory. The logical combinations depend on the role of
the processors, e.g. processor 0 being a sender and processor
1 a receiver is a different combination of processor 1 being
a sender and processor 0 a receiver. With this approach, the
shared memory is both a link and a synchronous communica-
tion buffer. With the exception of the logical block receiver0-
sender1 (the first in the memory), each block contains an area

Flag/envelope 1

Data word 1

Data word 2

 ...
Data word W

Barrier rendezvous

Flag/envelope 2

Data word 1

Data word 2

 ...
Data word W+1

 ...

Flag/envelope N (N-1)

Data word 1

Data word 2

 ...
Data word W+1

Block size

Receiver rank 0
Sender rank 1

Receiver rank 0
Sender rank 2

Receiver rank N
Sender rank N-1

Fig. 5. Logical organization of the shared memory.

of one integer (4 bytes, 1 memory position), where the TAG
envelope of the message is set by the sender, and an area
(the remaining block size) reserved for data to be transferred.
The first block (receiver0-sender1) has the same structure but
an additional position in order to do a semaphore for the
MPI Barrier function.

The data transfer area not only allows all MPI
datatypes that take 4 bytes but also the 8 bytes datatypes
(MPI LONG LONG and MPI DOUBLE). Each 8-byte value
is halved in 2 memory data words. The communication mode
may be considered the standard since, depending on the
situation, a sender processor may or not send the data without
waiting for the receiver processor. The conditions that hold
back the sender are when the receiver did not read yet the
latest data transmission and when the data to send is bigger
than the block size.

The implementation of each MPI function developed is
now described:

MPI Init - In this function, every processor computes the size
for each communication block of the memory, sets different
environment variables (like the group size or the process rank)
and finally synchronizes with the other processors by calling
the MPI Barrier function.

This initialization function relies on the Programmable Logic
reset of the first launched processor to initialize the shared
memory.

MPI Comm size - This function just returns the value of the
already set variable of the number of processors;

MPI Comm rank - Returns the value of the processor rank.
This value is set by the Xilinx tools when the hardware is
implemented;

MPI Send and MPI Recv - Since the memory is logically
divided into blocks, when a processor wants to send a set
of values, goes to the attributed block and checks in the

76 REC 2016

start

Rank 0?

i:= 0
Read flag i

Read barrier
rendezvous value

yes

no

PE i+1
updated

flag i?

Inc i

yes

Inc i

no

i=Np-1?
no

Set all flags to 0

yes

Toggle barrier
rendezvous

exit

Update flag kank-1

Read barrier
rendezvous value

Barrier
rendezvous

toggled?

yes

no

Fig. 6. Flowchart of the developed MPI Barrier function.

envelope position if the latest transmission was completed. If
so, the Send function writes the data and changes the value of
envelope position to the message tag. On the receiver side, the
processor is reading in the appropriate block in the envelope
position while it does not contain the tag value. When the value
appears, the receiver reads the data and sets that envelope as
free;

MPI Barrier - The Barrier is implemented with the help of
the envelope positions used for the point-to-point communica-
tions and a specific semaphore/rendezvous position (see figure
6). All the processors, except the master processor 0, set to
a new value the envelope position of the block where these
processors act as senders and the processor 0 act as receiver.
The processor 0 reads those positions and, after noticing that
all those positions were changed, it toggles the value of the
dedicated barrier rendezvous position meaning that all the
other processors are clear to leave the barrier;

MPI Bcast - Though a broadcast function is easily imple-
mented over the already developed point-to-point functions, a
different and more efficient approach was taken in order to
exploit the advantages of the hardware configuration of the
system. In this implementation, all the processors synchronize
and the root processor writes once in a block. The receiving
processors store the data from that block and inform the root
processor that the data has been read;

MPI Reduce, MPI Gather, MPI Scatter - These collective
communication functions were built over the point-to-point
communication routines. Since it is not expected a significant
performance improvement from implementations independent
from those point-to-point functions (taking into account the
defined architecture), this approach saves an important amount

TABLE I. FOOTPRINTS OF THE IMPLEMENTED MPI FUNCTION SETS IN
THE MICROBLAZE.

Function set Functions Implemented Footprint
Basic set MPI Init, MPI Comm size, MPI Comm rank, 10.3 KB

MPI Send, MPI Recv, MPI Finalize, MPI Barrier
Collective set Basic set functions, MPI Bcast, 25.4 KB

MPI Reduce, MPI Gather, MPI Scatter,

of code space, which is vital for an embedded implementation
where the memory resources are very limited. The Reduce
operations supported are the MPI SUM and the MPI PROD.

MPI Finalize - This function sets the defined MPI global
variables to the original state and calls the MPI Barrier where
each process waits for the others to finish the MPI session.

Table I shows the footprint of each set of functions.

There is a significant increase of the footprint when the set
that also implements the collective functions is used. The main
reason for this increase is the presence of the MPI Reduce
function which is responsible for 60 % of this increase. In
fact, allowing both the sum and product as reduce operations
for 4-bytes and 8-bytes floating-point and non floating-point
datatypes required a significant amount of assembly code.
In this table, the MPI Barrier primitive was considered a
function belonging to the Basic Set because the fundamental
functions that start and finish the MPI session use the barrier
to synchronize all the processors.

V. IMPLEMENTATION AND RESULTS

The system was implemeted and tested in a Xilinx Zynq-
7020 All Programmable SoC FPGA. The Zynq-7020 provides
a heterogeneous environment where FPGA programmable
logic (Xilinx Artix-7 technology) is connected to an ARM
Cortex-A9 based processing system. The software tools used
for system prototyping and testing were Xilinx Vivado 2014.4
and Xilinx Software Development Kit (SDK).

The hardware testbed has eight non-cached Microblazes,
each one with 32 kB of internal BRAM memory. All the
internal data and instructions were stored on these memories.
The shared memory was set with 8kB of BRAM memory
and a clock frequency of 100 MHz was used for all the
programmable logic. This configuration with eight Microblazes
utilizes 66 BRAMs (47%) and 10541 LUTs (20%) available
on the Zedboard.

To test the implementation of the library, several algorithms
with different features were implemented and tested. Fo space
reasons, we only present here two of them (1) matrix-vector
multiplication and (2) backward substitution.

A. Matrix-Vector Multiplication

The matrix-vector multiplication algorithm was developed
taking into account the scarce resources of the FPGA device
used. This mathematical operation is simply formalized as Ax
= y, where A is the input matrix, x is an input vector and y is
the computed output vector.

Due to the limitations of the FPGA in terms of BRAMs,
the Microblazes usually cannot store the complete matrix A.
To overcome this problem, the processors only store a single
row of A and the x vector to compute the corresponding y

REC 2016 77

TABLE II. EXECUTION TIMES FOR MATRIX-VECTOR MULTIPLICATION.

Multiple uBlaze execution times (ms)
Number of uBlazes

Size of matrix 1 2 4 6 8
50 × 50 22 12 9 7 6

100 × 100 88 47 30 25 23
150 × 150 200 106 65 53 50
200 × 200 357 189 118 97 87
250 × 250 559 296 180 148 137
300 × 300 806 427 264 214 196

TABLE III. SPEEDUPS FOR MATRIX-VECTOR MULTIPLICATION.

Multiple uBlaze speedups
Number of uBlazes

Size of matrix 2 4 6 8
50 × 50 1.8 3.1 4.0 4.0

100 × 100 1.9 3.3 3.9 4.4
150 × 150 1.9 3.3 3.9 4.4
200 × 200 1.9 3.1 4.0 4.5
250 × 250 1.9 3.1 4.0 4.4
300 × 300 1.9 3.2 4.0 4.5

element. At each iteration, the processors receive a new row
of A and discard the last one. After all the processors compute
their corresponding y elements, the entire y data is gathered to
the master processor.

The execution times (see table II) and speedups (see table
III) for single precision data were obtained for different sizes
of the matrix A and number of processors.

We have also determined the performance efficiency (ob-
tained performance/peak performance) of the architecture (see
table IV)

With two processors the efficiency is above 90 % (the
efficiency is only limited by the time spent in communication
functions). With more than two processors, the efficiency starts
decreasing. The cause of this new effect is the contention
verified on the AXI-Interconnect (which uses a round-robin
policy in these cases).

B. Backward Substitution

Considering a system of equations defined in the matrix
form Ax = b, the backward substitution is the process of
solving that system of equations when the matrix A is a
triangular superior matrix. The algorithm to solve a problem
of this kind is generically described by the C code in Listing
1.

Listing 1. Backward substitution example
for (i = n-1; i >= 0; i++)

b[i] = b[i]/A[i][i];
for (j = 0; j < i; j++)
b[j] = b[j] - b[i] * a[j][i];

The parallelization of the back substitution is less efficient
because of a poor scalability. This poor scalability is owing
to the fact that only the internal loop of the algorithm is

TABLE IV. SYSTEM EFFICIENCY FOR MATRIX-VECTOR
MULTIPLICATION.

Number of uBlazes Average Eff. Maximum Eff.
2 0.94 0.94
4 0.73 0.78
6 0.60 0.63
8 0.50 0.51

TABLE V. EXECUTING TIMES FOR BACK SUBSTITUTION.

Multiple uBlaze execution times (ms)
Number of uBlazes

Size of matrix 1 2 4 6 8
100 × 100 46 30 20 18 20
200 × 200 183 116 74 63 70
300 × 300 414 257 161 136 151
400 × 400 738 454 282 263 261
500 × 500 1155 707 437 364 403
600 × 600 1669 1018 627 520 575

TABLE VI. SPEEDUPS FOR FOR BACK SUBSTITUTION.

Multiple uBlaze speedups
Number of uBlazes

Size of matrix 2 4 6 8
100 × 100 1.51 2.30 2.56 2.30
200 × 200 1.58 2.47 2.90 2.61
300 × 300 1.61 2.57 3.04 2.74
400 × 400 1.63 2.64 3.17 2.87
500 × 500 1.71 2.84 3.24 2.89
600 × 600 1.64 2.66 3.21 2.90

parallelizable. Therefore, every processor must run all the
iterations of the external loop and compute/receive the b[i]
value (pivot) of the external loop. The broadcast of this value
is a critical point in the parallel algorithm and, because of
this fact, the optimized MPI Bcast function had an ideal
environment for testing in this algorithm. To complete the
parallel algorithm, there is the usual data gathering of the
vector b to the master processor after the computation. Tables
V and VI shows the results obtained with this benchmark.

We have also determined the performance efficiency (ob-
tained performance/peak performance) of the architecture (see
table VII)

The results show that the best performance and maximum
speedup was achieved with 6 processors followed by the 8
processors architecture. The high communication/ computation
ratio, and consequent contention in the architecture inter-
connect, and a hard parallelization pattern limit the system
scalability for backward substitution.

VI. CONCLUSIONS

The main objectives of the work presented in this document
consisted in studying and developing solutions that implement
the MPI interface in distributed memory soft-processors on
FPGA.

In order to minimize the internal memory size of each
processor, the implemented MPI library was intended to be
as simple as possible (but compatible with every relevant
datatype). The developed footprint of the MPI basic set is ap-
proximately 10 kB and the remaining implemented collective
functions do not increase significantly that footprint value.

Good performance and efficiencies were achieved for two
tested algorithms with distinct communication requirements.

TABLE VII. SYSTEM EFFICIENCY FOR BACKWARD-SUBSTITUTION.

Number of uBlazes Average Eff. Maximum Eff.
2 0.80 0.82
4 0.64 0.67
6 0.50 0.53
8 0.34 0.36

78 REC 2016

Future iterations of this work shall provide hardware
improvements in order to minimize the effect of the inter-
connect contention, like using clusters of processors each
with its shared RAM. Extend the compatible MPI functions,
like MPI Allgather, MPI ISend and MPI IRecv, to improve
portability. Consider the implementation of some functions in
hardware, like MPI Reduce.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with references
PTDC/EEA-ELC/122098/2010 and UID/CEC/50021/2013.

REFERENCES

[1] MPI Forum, http://icl.cs.utk.edu/ftmpi/ [Accessed in September, 2015]
[2] S. Lakshminarayana, S. Gosh, and N.Balakrishnan, ”Implementation of

MPI over HTTP”, in 7th International Conference on High-Performance
Computing and Networking, 1999, pp.1299-1302.

[3] E. Marques, F. Martins, V. Vasconcelos, N. Ng and N. Martins, ”Towards
deductive verification of MPI programs against session types”, in Pro-
gramming Language Approaches to Concurrency- and Communication-
cEntric Software, 2013, pp.103-113.

[4] FT-MPI,http://icl.cs.utk.edu/ftmpi/ [Accessed in September, 2015]
[5] MPICH, https://www.mpich.org/ [Accessed in September, 2015]
[6] OpenMPI, https://www.open-mpi.org/ [Accessed in September, 2015]

[7] J. Poole, ”Implementation of a Hardware-Optimized MPI Library for the
SCMP Multiprocessor”, MSc Thesis, 2004.

[8] T. P. McMahon and A. Skjellum, ”eMPI/eMPICH: Embedding MPI,” in
MPI Developers Conference, 1996, pp.180-184.

[9] S. Gao, A. Schmidt, and R. Sass, ”Hardware implementation of MPI
Barrier on an FPGA cluster”, in International Conference on Field
Programmable Logic and Applications, 2009, pp.12-17.

[10] R. Brightwell, K. Hemmert, R. Murphy, A. Rodrigues and K. Un-
derwood ”A Hardware Acceleration Unit for MPI Queue Processing”,
in Proceedings of 19th IEEE International Parallel and Distributed
Processing Symposium, 2005 pp.96-109.

[11] J. A. Williams, I. Syed, J. Wu, and N. W. Bergmann ”A Reconfigurable
Cluster-on- Chip Architecture with MPI Communication Layer”, in
Proceedings of 14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2006, pp.350-352.

[12] M. Saldana and P. Chow, ”TMD-MPI: An MPI Implementation for
Multiple Processors Across Multiple FPGAs”, in Proceedings of the
16th International Conference on Field-Programmable Logic and Ap-
plications, 2006, pp.1-6.

[13] M. Saldana, A. Patel, C. Madill, D. Nunes, D.Wang, H. Styles, A.
Putnam, R. Wittig and P. Cho, ”MPI as an Abstraction for Software-
Hardware Interaction for HPRCs”, in Second International Workshop on
High-Performance Recofigurable Computing Technology and Applica-
tions, 2008, pp.1-10.

[14] Y. Peng, M. Saldana and P. Chow, ”Hardware Support for Broadcast and
Reduce in MPSoC”, in International Conference on Field Programmable
Logic and Applications, 2011, pp.144-150.

REC 2016 79

80 REC 2016

FPGA implementation of a Multi-Processor for Cluster Analysis

José Canilho
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
jose.canilho@tecnico.ulisboa.pt

Mário Véstias
INESC-ID, ISEL

Instituto Politécnico de Lisboa
mvestias@deetc.isel.pt

Horácio Neto
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
hcn@inesc-id.pt

Abstract—In this paper, a hardware/software architecture is
proposed to efficiently execute the widely known and commonly
used K-means clustering algorithm. The architecture splits
the algorithm’s computational tasks by both hardware and
software, with custom built hardware accelerators performing
the most demanding computations. By doing so acceleration is
achieved not only by performing the computationally demand-
ing tasks faster but also by parallelizing different independent
steps of the algorithm through both hardware and software
domains. A prototype was designed and implemented on a
Xilinx Zynq-7000 All Programmable SoC. The solution was
evaluated using a set of relevant benchmarks and speed-ups
over a software-only solution were measured. A maximum
speed-up of 10.1 was observed using only 3 hardware pro-
cessing elements. However, the system is fully scalable and
therefore capable of achieving much higher speed-ups simply
by increasing the number of processing elements.

Keywords - Clustering, K-means, Hardware/Software Co-
design, Hardware Acceleration, Systems on Chip, Custom
Hardware Design

1. Introduction

Cluster analysis, or clustering, consists in grouping a set
of objects in such a way that objects which are similar to
one another according to some metric belong in the same
group (called a cluster). It is one of the most useful and
used task of exploratory data mining, and can be applied
in a wide variety of fields. Being an unsupervised learning
method, a previous system training with a training set is not
required and classification can be performed directly from
the unclassified dataset.

Clustering can be a rather lengthy process, when sev-
eral iterations through the dataset are needed and when
the dataset itself is large in both number of points and
dimensionality. The increasing scientific interest in Big Data
analysis (which is a broad term to define very large datasets)
and real-time clustering emphasize the need of producing
clustering results of large datasets while fulfilling several
timing constraints. Even the most simple and straightforward
algorithms may sometimes take too long to produce the
results. This problem can be attenuated by the use of acceler-
ation techniques, in order to speed up clustering algorithms.

The acceleration of algorithms has been a hot topic in the
scientific community for quite some time and its importance
in clustering algorithms is increasing dramatically with the
equally increasing demand for classifying large datasets
quickly. Several acceleration techniques have been applied
to clustering algorithms, from parallel and distributed com-
puting [8][16] to the use of GPUs [7][11][15] and hardware
accelerators [10][5][12][6][14][9].

The remainder of the paper is organized as follows.
Section 2 will explicitly detail the targeted clustering algo-
rithm. Section 3 covers the previous related work. Section
4 presents the developed solution. Section 5 presents a
theoretical analysis and experimental results conducted for
the developed solution. Section 6 summarizes the paper.

2. The K-means clustering algorithm

The targeted clustering algorithm was the K-means al-
gorithm. It is one of the most simple algorithms capable
of performing the clustering task. Despite its simplicity, it
is still one of the most widely used clustering algorithms,
due to its easy implementation and fast execution time. The
algorithm uses a centroid model. It separates the data into a
set of clusters, each one represented by the mean vector
of all the datapoints within the class. Each datapoint is
classified into the cluster whose center is closest to it. The
distance is usually judged using the euclidean distance as a
metric, although some other types of metrics can be applied
[2]. After an initial position is attributed to each center, the
algorithm starts updating the position of each center in an
iterative fashion. Each iteration is divided in two main steps:

1) Assignment step: each datapoint is assigned to the
nearest center, given the chosen distance metric

2) Update step: after all the datapoints are assigned,
the centers are re-calculated. The new positions
correspond to the mean of all the datapoints within
each cluster

The algorithm ends when the centers’ positions stop
changing between iterations.

Algorithm 1 presents the pseudo-code for the K-means
algorithm. Lines 10-22 represent the assignment step and
lines 23-25 represent the update step. The iteration is re-
peated until the centers stop changing. The overall algorithm

REC 2016 81978-989-704-110-5 © REC 2016

Algorithm 1 K-means pseudo-code.
1: centerInitialization();
2: repeat
3: for each center k do
4: classAccumulator[k] = 0;
5: classCounter[k] = 0;
6: end for
7: for each datapoint d do
8: classifications[d] = -1;
9: end for

10: for each datapoint d do
11: minDistance = Infinity;
12: for each center k do
13: currentDistance = distance(d, k);
14: if currentDistance < minDistance then
15: minDistance = currentDistance;
16: closestCenter = k;
17: end if
18: end for
19: classifications[d] = closestCenter;
20: classAccumulator[closestCenter] += d;
21: classCounter[closestCenter]++;
22: end for
23: for each center k do
24: newCenter[k] = classAccumulator[k] / class-

Counter[k];
25: end for
26: until (centers don’t change)

presents a complexity of O(nkdi), with n being the number
of datapoints, k being the number of clusters, d being the
dimensionality of each datapoint and i being the number of
iterations needed for convergence.

3. Related Work

Given the importance of accelerating clustering algo-
rithms, and specifically the K-means algorithm, multiple
studies have been conducted targeting the algorithm’s accel-
eration. Some of the covered studies focus on algorithmic
transformations capable of speeding up the clustering pro-
cess. One important possible modification to the standard
algorithm lies on the distance metric used to evaluate the
datapoints. Estlick, M. et. al [2] proposed the use of the L1

norm (also known as the Manhattan norm), instead of the
standard euclidean distance, in hardware based solutions.
The Manhattan norm is characterized as the sum of the
absolute value of the difference in all coordinates between
the datapoint and the center. Its mathematical expression is
presented in expression (1). By using the Manhattan norm
instead of the euclidean norm, the need for multiplications
is eliminated. This makes the Manhattan norm more suit-
able for custom hardware solutions. The authors tested the
influence of the new norm in the classification results and
a small and negligible impact on the results was observed.
In comparison, the L∞ norm, which also doesn’t require
multiplications, had a much more detrimental impact on

the results, making it not as appropriate for the algorithmic
transformation.

D∑
i=1

|xi − cl(i)| (1)

Several variants to the K-means algorithm can be found
in the literature, which can vary very slightly to the original
algorithm. Although they do not change the essence of how
the classification is performed, some changes can prove
to be beneficial in a small handful of applications [13].
One known variant which maintains the algorithm suitable
for any Big Data application was suggested by V. Faber
[3], called the Continuous K-means. In this variant, only
a portion of the dataset is analysed per iteration. This
modification is only suitable, however, if the dataset is large
enough, making any subset chosen a viable representation
of the entire dataset. By doing so, the time per iteration is
decreased. Further testing showed that the Continuous K-
means can converge up to 10 times faster than the standard
algorithm, although no mention was made regarding the
quality of the classification results.

3.1. GPU Computing

The proposed GPU implementations for the K-means
algorithm take advantage of the several available threads
blocks and parallelize the assignment step by having each
thread compute the classification of one datapoint. In order
for the whole algorithm to be completed, the host CPU is
often used to take care of the remaining tasks.

In 2007, Che S. et. al [1] developed a GPU imple-
mentation adopting the CUDA programming model. The
datapoints were transferred to the GPU and the assignment
step was delegated to the GPU whilst the CPU gathered the
results and performed the center updates. The implemen-
tation had large memory transfer overheads, specially due
to the CUDA version used at the time, which only allowed
synchronous DMA transfers (meaning that a transfer had
to be completed in order for the computation to start). The
results report only a comparison between the execution time
of the distance calculation for all datapoints, which was
accelerated up to 8 times, when compared to the CPU-
only implementation. The results report datasets of different
sizes, but no mentions are made to the used number of
clusters and data dimensionality.

In 2008, Farivar, R. et. al [4] presented a GPU based
solution, also designed using CUDA. The solution paral-
lelizes the algorithm in a similar way as in [1]. Memory
transfer overheads were improved and testing was performed
on a dataset with 1 million 1-D datapoints and 4 clusters.
A speed-up of 13 was observed, although the authors claim
that a speed-up of up to 68 could be achieved, using the top
of the line GPU at the time.

Following Farivar’s work a year later, [15] reports the
accelerating approach followed by Zechner, M. et. al, which
also relies on the CUDA programming model. The same
parallelization method was applied, this time on a more

82 REC 2016

powerful GPU. For large dataset sizes and dimensionalities,
the maximum speed-up observed in the experiments was 14,
as the time spent labelling the datapoints grows significantly.
These results end up contradicting Farivar’s expectations,
however, for the use of more powerful GPU and instead
emphasize the communication bottleneck.

3.2. Custom Hardware Designs

Most of the custom hardware solutions for the K-means
algorithm rely on pure hardware implementations of the
algorithm, where both steps of the K-means algorithm are
mapped into distinguishable blocks of hardware, each one
responsible for only one task. The recent introduction of
SoC FPGAs allow the implementation of efficient hard-
ware/software co-design architectures within a single chip.
With embedded hard-core processors, among other useful
components, and efficient bridging between hardware and
software domains, high performances can be achieved.

In 2000, Lavenier, D. [10] presented an FPGA imple-
mentation of the algorithm, suited for the analysis of hyper-
spectral images, fed to the hardware via a stream of pixels.
The assignment step was delegated to a systolic process
array (SPA) with its size equal to the number of clusters.
Each element computes the Manhattan distance to its center
and passes the result along the array. At the end of the array,
the closest center and its distance is obtained. In order for
the complete algorithm to work, a host CPU is needed to
perform the remaining tasks and transfer the datapoints to
the FPGA when needed. Using DMA transfers between the
host and the FPGA, the maximum observed speed-up was
336 when compared to a CPU-only implementation, using
256 clusters. However, no mentions are made regarding the
type of dataset used nor the characteristics of the CPU-based
implementation.

Later, in 2003, Gokhale, M. et. al [5] presented a hard-
ware architecture which computed the distance calculation
of the datapoints to the center and delegated the center
updates to a processor. The design used several SPAs to
compute the datapoint classifications in parallel and used
32-bit wide BRAMs in the transfers between processor and
user logic. In the initial stages of development, both an ARM
hard-core and a NIOS soft-core were considered, although
testing was only performed with the ARM hard-core. The
maximum speed-up observed was 11.8, when compared to
a CPU-only implementation running at 1Ghz.

Two years later, Wei-Chuan Liu et. al [12] proposed a
hardware architecture capable of performing the algorithm
in its entirety. The framework was named KACU: K-means
with hArdware Centroid Updating. The architecture and
the overall work performed gave emphasis to the center
updating step and the algorithm applied was the continuous
K-means [3] instead of the standard algorithm, since it pro-
vides more update steps, given the number of the datapoints
evaluated per iteration. The main architecture consists of
an SPA, with the addition of the accumulators needed to
perform the mean of each center and the divider block,
along with some extra control blocks. The new centers only

replaced the old ones after the control unit signalled so.
The remaining tasks regarding control are handled by a host
CPU. The architecture was designed in an Altera FPGA,
using a NIOS soft-core processor running at 50 Mhz, for
the control unit. Better speed-ups were achieved for small
subsets, since the execution time of the update step becomes
less negligible. A maximum of 5.6 was observed compared
to the solution with software centroid updating.

Following the same line of thought, Wang, X. et. al
developed another custom hardware solution, targeted for
the standard K-means algorithm applied in the analysis of
multi-spectral images [14]. This solution also delegated all
the computational tasks to the custom hardware. The host
processor is only needed for the initial center selection and
to upload the datapoints and the centers to the memory
within the FPGA. The Manhattan norm was the chosen
distance metric. From all the custom hardware solutions
covered so far, no mention was made regarding the nu-
merical representation chosen. In Wang’s implementation,
fixed-point arithmetic was used, except in the center updates:
floating-point converters were used in both inputs and out-
puts of the divider block and the new centers were computed
in floating-point representation. The timing results obtained
by the authors focused on complete execution time rather
than the time taken per iteration of the algorithm. For 50
iterations, a speed-up of 11 was observed, when comparing
to a full CPU implementation running on an Intel Pentium 4
operating at 3.2 Ghz. It is also claimed that a higher number
of iterations will improve the speed-up results, although
most K-means applications will converge in few iterations.

Hussain, H. et. al [6] proposed a specific hardware
implementation of the K-means algorithm targeting bioinfor-
matic applications. The architecture used fixed-point arith-
metic and introduces a different way of parallelizing compu-
tation. Instead of splitting the dataset throughout several pro-
cessing elements, the centers are split. Each element com-
puted the distance of all datapoints to a subset of the centers
and a final reduction block merged all results together,
followed by a single divider used in the update step. An
architecture capable of holding 8 centers was implemented
in a Xilinx XC4VLX25-10SF363 FPGA, running at 126
Mhz. A speed-up of 10.3 was observed, when comparing
to a CPU-only implementation running on an Intel Core2
Duo 3.0 GHz CPU. If the FPGA resources allow for the
architecture to be replicated several times, then the speed-
up results can improve further.

More recently, in 2013, Kutty, J. et. al [9] presented
a high speed configurable FPGA architecture. Similarly to
the previous approach, the architecture split the distance
calculation of a single datapoint through several distance
calculation blocks, one per each center. These blocks com-
puted the Manhattan distance and delivered the results to
a tree comparison block. The main difference to Wang’s
architecture is that a dividing block is used for each center.
The dataset and the initial centers are stored a priori in
the BRAMs within the FPGA. The architecture was im-
plemented in a Xilinx Virtex-6 FPGA. A operating clock
frequency of 400 Mhz was achieved for up to 9 clusters.

REC 2016 83

The clock frequency decreases with the increase of number
of clusters, although a frequency of 300 Mhz can still
be achieved for 32 clusters. The results focused on the
occupied area of the architecture, rather than on the actual
computation time, and no speed-ups were mentioned for
the complete algorithm’s execution, unfortunately. The only
inference that can be made regarding the computation time is
the link between the clock frequency and the architecture’s
throughput, which was claimed to be of 1 classification per
clock cycle.

4. Architecture

The proposed architecture in this paper is a hard-
ware/software solution, implemented in a Zynq-7020 All
Programmable SoC, using 32-bit floating point as the nu-
merical representation. The Zynq-7000 device family in-
corporates FPGA resources and software programmability
through the use of two ARM Cortex-A9 hard-core CPUs.
These SoC devices are appropriate for the implementation
and deploy of hardware/software solutions as they already
offer a clear separation between hardware and software
domains. The description of the developed architecture starts
with an overview of the target device, followed by a top-
down description of the solution.

4.1. Target device

The Zynq-7020 device has two main distinguishable
blocks: the Programmable Logic (PL) and the Processing
System (PS). The PL holds the FPGA resources and the PS
represents the software domain. The PS includes the two
ARM CPUs, as well as the available caches: two 32KB
L1 caches (one per CPU) and a 512KB shared L2 cache.
Other important components used throughout the devised
architecture are the On-Chip Memory (OCM) present in the
PS’s APU, the General Interrupt Controller (GIC) capable
of receiving interrupt signals from the PL and the DDR
controller. All transfers between the PS and the PL are ac-
complished using the AXI protocol. The Zynq-7020 PS/PL
interface offers several AXI3 ports, ranging from one of
three different types. The available ports consist of:

• 4 general-purpose (GP) 32-bit ports (2 masters and 2
slaves), suitable for control functions and peripheral
access

• 4 high-performance (HP) 64-bit slave ports, suitable
for large data transfers

• 1 64-bit accelerator coherency port (ACP), suitable
for large transfers with cache coherency implications

4.2. Hardware/Software Architecture

The developed architecture utilizes both the PS and
the PL. The ARM cores not only manage some control
tasks needed to perform the algorithm but also perform
computational tasks themselves. The PL implements various
hardware components. All components are either supplied

Figure 1. Top Level design architecture

by the Xilinx LogiCORE IP catalog or custom designed.
In particular, the PL will feature custom made hardware
accelerators, responsible for the computation in the PL side.

As referred, the two main steps of the K-means algo-
rithm are the assignment step and the update step. The
assignment step classifies the datapoints and updates the
accumulators and centers for each cluster. The update step
re-calculates the centers of each cluster. Table 1 summarizes
the tasks each computational element has to perform per
iteration.

TABLE 1. TASK DELEGATION BETWEEN HARDWARE AND SOFTWARE
DOMAINS

Task Performed by

Assignment Step Datapoint Classification HW Components
Accumulations/Countings ARM

Update Step ARM

The top level design is portrayed in figure 1. The design
provides a first insight on what components feature in the
architecture, in both the PS and the PL, and how these are
interconnected. The DDR memory holds the dataset, as well
as the centers and some intermediate results such as the
classification results per iteration. Still on the PS side, the
2 ARM cores are featured, along with the OCM that holds
the binary executables for both processors. Both the DDR
memory and the ARM cores interact with several AXI3
ports. The blue dashed lines represent connections meant
to transfer data and use the HP ports. The orange dashed
lines represent connections meant for control functions and
use the GP ports. Still in the PS side, the GIC receives two
interrupt signals from one of the components in the PL.

84 REC 2016

On the PL side, the hardware architecture responsible for
computing the datapoint classifications is featured. The first
component is the AXI interconnect layer. This component
represents several AXI interconnect blocks, used for both
component connection purposes and protocol conversion.
The interconnect layer converts the AXI3 protocol used in
the device’s AXI interfaces to either AXI4-Full or AXI4-
Lite. The connections meant for data transfers are converted
to AXI4-Full, which allows the use of burst transfers. The
connections meant for control functions are converted to
AXI4-Lite, which is a simplified implementation of the
AXI4-Full protocol and has a smaller resource footprint.

After the routing and protocol conversion is performed,
the connection needed with the several PL components can
be made. The data connections from the DDR memory
arrive to one of the three DMA available DMA compo-
nents, which have the capability of converting incoming data
via AXI4-Full to AXI4-Stream and vice-versa. The AXI4-
Stream is much more suitable for sending and receiving
large portions of data due to its unlimited bursting size. The
way the data flows through the hardware architecture will
be detailed in section 4.3.

The datapoints and the centers arrive to the accelerators
after passing through several different components, whose
job will be detailed in section 4.3. The accelerators are
initially configured by the ARM cores with the multiple
dataset parameters (such as number of datapoints, number of
centers and data dimensionality) and each one is responsible
for computing a partial datapoint classification. The results
of each accelerator need to be merged together for the
correct classification to be obtained. This is accomplished by
a simple tree reduction block. The final result is fed back to
one of the DMA components, which writes the result back
in the DDR memory.

4.3. PL Dataflow

The hardware accelerators in the PL can be configured to
handle any number of datapoints and centers. This flexibility
adds some complexity on how the data flows through the
PL architecture. Similarly to some of the previous devised
solutions, the hardware architecture parallelizes the compu-
tation by splitting the centers through several accelerators.
To accomplish that, the datapoints need to be broadcasted
to all accelerators and the centers need to be delivered to
the appropriate accelerators.

The datapoints are received by the DMA and are then
sent to a local memory block. This block contains a dual-
port BRAM and custom logic able to interact with the
BRAM given the data received via AXI4-Stream. Since the
accelerators can hold more than one center, it is possible that
the same datapoint needs to be evaluated several times (once
per center). By using a local memory in the PL, a datapoint
can be accessed multiple times without the need of multiple
DMA transactions of the same datapoint. However, it is not
viable to hold an entire dataset in the local memory, due to
its size. Instead, the local memory holds only two datapoints
at a time: the one being processed, and the next one. Both

ports of the BRAM are exploited, in order to read and write
values independently.

As mentioned previously, the datapoints need to be
broadcasted throughout the several accelerators. This is
accomplished by a custom made AXI4-Stream Broadcast
block, which relies only on combinatorial logic to perform
the broadcast. By performing a broadcast directly in the
PL side, the hardware solution becomes highly scalable, as
adding more accelerators does not require any more data
transfers and thus preserves the PS/PL bandwidth.

As for the centers, each DMA component is respon-
sible for sending their half of the centers to half of the
accelerators. In the presented diagram, an example using
only 4 accelerators was used, and each interconnect block
distributes its half of the centers through 2 accelerators.

After the accelerators’ results are computed and merged
in the tree reduction block, they are sent back to the
Datapoint DMA core. Differently from the Centers DMA
cores, which use a polling mechanism in their transfers, the
Datapoint DMA core uses an interrupt mechanism, in both
read and write channels. When sending the dataset to the
PL, maximum transfer length may not be large enough to
send the entire dataset in one single transfer. An interrupt
mechanism will allow the ARM cores to start their side of
the computation without actively polling the DMA core for
the remainder of the dataset to be sent.

Using an interrupt mechanism for the incoming results is
also highly beneficial. In order to have both ARMs and the
accelerators working in the assignment step simultaneously,
a result burst size is defined beforehand. Once a complete
result burst arrives to the Datapoint DMA, an interrupt
signal is issued and the ARMs are signalled to start their
computation, using the newly received burst. This way,
computational parallelism between hardware and software
domains is achieved.

4.4. Hardware Accelerators

Figure 2. Block Diagram of the Hardware Accelerator

REC 2016 85

The hardware accelerators are the most important com-
ponent in the PL side. Each accelerator computes the Man-
hattan distance between datapoints and a subset of the
centers, in 32-bit floating-point representation, and needs to
compute both the closest center found to the datapoint and
the distance to said center.

Figure 2 illustrates the block diagram of one hardware
accelerator. In the presented figure, the connections inside
the accelerator represented with arrows stand for AXI4-
Stream connections and the ones represented with straight
lines stand for simple connections.

As evidenced in figure 1, each accelerator needs to be
initially configured through its AXI4-Lite interface. In the
accelerator’s diagram, 5 different parameters are illustrated:
number of centers per accelerator, number of dimensions,
number of datapoints in the dataset, offset and result burst
size. The number of centers is specified beforehand. The
offset parameter is needed by the accelerator, in order to
keep track of which cluster ID each center belongs to. The
result burst size states how many classification results are
in a single burst of results.

The incoming datapoints firstly go through a custom
made component, named Invalidate block. This component
was added as a fix to an issue that occurs when the acceler-
ators have different number of centers assigned to them. As
mentioned before, the same datapoint can be broadcasted to
all accelerators more than once, depending on the number of
centers per accelerator. If one accelerator has more centers to
evaluate than others, and thus needs the same datapoint more
times, the accelerators with fewer centers need to invalidate
the incoming repeated broadcasts that are no longer needed.

The incoming centers are stored in a memory, local
to the accelerator. The local memory is identical to the
memory used for the datapoints in the top level design.
Since the number of centers is usually much inferior to
the number of datapoints, it is conceivable to hold all the
datapoints in local memories in the PL side, specially if the
multiple accelerators (and hence, multiple local memories)
are available. In each BRAM, port A is used for storing
incoming centers, and port B is used to read them from the
local memory.

Each accelerator features 3 floating-point cores, respon-
sible for computing the Manhattan distance. Recalling equa-
tion 1, the required operations are the subtraction, the “abso-
lute value”, and the accumulation. Each one of the floating-
point cores performs one of the operations. After a complete
Manhattan distance is computed, the result is handed to
another custom made component, named Minimum Distance
block. This component performs successive comparisons
between the distances to each evaluated center and keeps
the closest distance. With the aid of the offset parameter,
it also outputs the ID of the cluster correspondent to the
closest center. The burst size parameter is also used, in order
to signal the end of a burst of results in the AXI4-Stream
protocol.

5. Analysis and Experiments

In algorithm acceleration, the execution time results are
the most meaningful extractable metric from the architec-
ture, among several other important measurements such as
area occupied, hardware throughput and hardware/software
bandwidth. This section focuses on the timing analysis
for the devised architecture, featuring an analytical model
that can predict the expected timing results for any dataset
and hardware configuration. The model is then validated
with actual measurements, ranging from a wide number of
algorithm executions and dataset configurations.

5.1. Analytical Model

The analytical model created allows one to predict the
obtained speed-up in any given configuration. These predic-
tions can be obtained by modelling the iteration times for
both software-only and hardware/software implementations.
Each major step of the algorithm was analysed separately
and mathematical expressions were formulated for the fol-
lowing execution times:

1) T classify ARM - time the ARM processor takes
to classify a datapoint

2) T classify Accel - time the accelerators take to
classify a datapoint

3) T accum - time the ARM takes to update the
accumulator and the counter, given a single
classification

4) T update - time the ARM takes to update a single
center

In a software-only implementation, all steps have to be
performed sequentially. Consequently, the sequential itera-
tion time is given by equation 2, with N being the number
of datapoints and C the number of centers.

TiterationSeq
= NTclassifyARM

+NTaccum+CTupdate (2)

5.2. Experimental Results

The conducted experiments show the impact of each
parameter on the execution time. Each experiment consisted
of several executions of the algorithm, whilst performing
a sweep in one of the parameters. The main targeted
parameters were the number of centers, dimensions, and
datapoints. Also, each experiment was conducted with up to
3 accelerators, in order to also evidence how an increase in
the number of accelerators used would influence the results.
In all experiments, the ARM cores operated at 650 Mhz,
while the accelerators and all PL components operated at
100 Mhz.

Figures 3 and 4 portray the results from the first two
experiments, which consisted of a sweep in the number of

86 REC 2016

centers used. The experiments differ in the dataset used:
the first experiment used a substantially smaller dataset.
In both graphs, the dashed lines represent the estimates
given by the analytical model and the full lines represent
the actual measured values. A rough interpretation of both
graphs indicates that the analytical model was more accurate
in the 2nd experiment. In fact, the maximum relative error
decreased from 13% to 10%. This is expected as the 2nd
experiment deals with much larger execution times, that can
be measured more accurately. The results also suggest that,
depending on the number of accelerators used, there is an
ideal number of centers per accelerator, able to provide the
best speed-up. This value is around 2 centers per accelera-
tor. When more centers are added, the accumulator/counter
updates become the main bottleneck.

Figure 3. Speed-up results for the 1st center sweep

Figure 4. Speed-up results for the 2nd center sweep

The 3rd experiment focused on the data dimensionality
(see figure 5). The size of the dataset from the 2nd experi-
ment was kept and the number of centers was fixed. Study-
ing the influence of the number of dimensions used on the
execution time is important, as clustering problems in Big
Data analysis not only focus on datasets with a large number
of points but also on very high dimensionality datasets.
In this experiment, the expected values from the analytical
model (and, consequently, the obtained speed-ups) had much

less fluctuation when comparing with the previous experi-
ments. This is explained by the way each computational task
is dependent from the data dimensionality parameter. The
tasks are linearly dependent from the data dimensionality.
In result, both sequential and hardware/software iteration
times grow linearly as the sweep is performed. The only
difference between both implementations is in the growth
ratio, portrayed by the obtained speed-up.

Figure 5. Speed-up results for the dimensions sweep

The 4th and final experiment focused on the number
of datapoints in the dataset (see figure 6). Similarly to
what happened with the data dimensionality parameter, the
iteration times in both sequential and hardware/software
implementations are linearly dependent from the number
of datasets. As a result, the expected speed-ups throughout
the sweep should remain somewhat constant. However, the
number of datapoints in the dataset does not have any influ-
ence on which of the timing cases is dictating the iteration
time, since both TclassifyAccel

and Taccum are independent
from the number of datapoints. This independence could not
be claimed in the previous experiment.

Figure 6. Speed-up results for the datapoint sweep

From all 4 experiments, the observed maximum speed-
up was 10.1. However, the analytical model suggests that
using more than 3 accelerators can further improve the

REC 2016 87

maximum speed-up. The model was validated throughout all
4 sweeps and predictions for any given dataset and number
of accelerators could be made with a rather low relative
error. Depending on the amount of resources available in
the target device, the number of accelerators able to be
implemented can vary and the consequent speed-up results
can change drastically. As an example, the most complex
device from the Zynq-7000 family, the Z-7100, could fit up
to 144 accelerators. If the algorithm were to be used near to
its equilibrium point between both timing cases with such a
large number of accelerators, although unlikely in this setup,
the expected speed-up could reach up to 165.

6. Conclusions

In this paper, a hardware/software architecture target-
ing the K-means clustering algorithm was devised, using
the recent SoC devices which incorporate FPGA resources
and hard-core processors in one single chip. These devices
enable the design and implementation of efficient custom
hardware solutions, while offering powerful built-in cores,
as well as an easy integration between hardware and soft-
ware domains.

The previous acceleration techniques were studied be-
forehand, with computation being mostly parallelized be-
tween the several computational elements by either splitting
the dataset or the centers. The proposed solution chooses
a center split, as it provides a much more scalable so-
lution. Furthermore, the solution exploited the parallelism
between hardware and software components, by having both
the hardware accelerators and the ARM cores performing
different computational tasks in parallel.

The solution was tested for its ability to accelerate
the clustering algorithm. A timing theoretical model was
constructed and several experiments were conducted, which
further validated the devised model. Both theoretical and
experimental results showed the solution can significantly
accelerate the algorithm, even with a few number of accel-
erators. Predictions were also made for a higher number of
accelerators, which could potentially increase the speed-ups
even further.

Acknowledgment

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with ref-
erence UID/CEC/50021/2013.

References

[1] S. Che, J. Meng, J. W. Sheaffer, and K. Skadron, “A performance
study of general purpose applications on graphics processors,” in First
Workshop on General Purpose Processing on Graphics Processing
Units, 2007, p. 10.

[2] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, “Algorith-
mic transformations in the implementation of k-means clustering on
reconfigurable hardware,” in Proceedings of the 2001 ACM/SIGDA
ninth international symposium on Field programmable gate arrays.
ACM, 2001, pp. 103–110.

[3] V. Faber, “Clustering and the continuous k-means algorithm.” Los
Alamos Science, 1994, pp. 138–144.

[4] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel
implementation of k-means clustering on gpus,” in PDPTA, vol. 13,
no. 2, 2008, pp. 212–312.

[5] M. Gokhale, J. Frigo, K. Mccabe, J. Theiler, C. Wolinski, and
D. Lavenier, “Experience with a hybrid processor: K-means clus-
tering,” The Journal of Supercomputing, vol. 26, no. 2, pp. 131–148,
2003.

[6] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, “Fpga
implementation of k-means algorithm for bioinformatics application:
An accelerated approach to clustering microarray data,” in Adap-
tive Hardware and Systems (AHS), 2011 NASA/ESA Conference on.
IEEE, 2011, pp. 248–255.

[7] M. Kakooei and H. S. Shahhoseini, “A parallel k-means clustering
initial center selection and dynamic center correction on gpu,” in
Electrical Engineering (ICEE), 2014 22nd Iranian Conference on.
IEEE, 2014, pp. 20–25.

[8] T. Kucukyilmaz, “Parallel k-means algorithm for shared memory
multiprocessors,” Journal of Computer and Communications, no. 2,
pp. 15–23, 2014.

[9] J. S. S. Kutty, F. Boussaid, and A. Amira, “A high speed configurable
fpga architecture for k-mean clustering,” in Circuits and Systems
(ISCAS), 2013 IEEE International Symposium on. IEEE, 2013, pp.
1801–1804.

[10] D. Lavenier, “Fpga implementation of the k-means clustering algo-
rithm for hyperspectral images,” in Los Alamos National Laboratory
LAUR. Citeseer, 2000.

[11] Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-means algorithm
by gpus,” in Computer and Information Technology (CIT), 2010 IEEE
10th International Conference on, June 2010, pp. 115–122.

[12] W.-C. Liu, J.-L. Huang, and M.-S. Chen, “Kacu: k-means with
hardware centroid-updating,” in Emerging Information Technology
Conference, 2005. IEEE, 2005, pp. 3–pp.

[13] C. Ordonez, “Clustering binary data streams with k-means,” in Pro-
ceedings of the 8th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery. ACM, 2003, pp. 12–19.

[14] X. Wang and M. Leeser, “K-means clustering for multispectral images
using floating-point divide,” in Field-Programmable Custom Comput-
ing Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium on.
IEEE, 2007, pp. 151–162.

[15] M. Zechner and M. Granitzer, “Accelerating k-means on the graphics
processor via cuda,” in Intensive Applications and Services, 2009.
INTENSIVE’09. First International Conference on. IEEE, 2009, pp.
7–15.

[16] J. Zhang, G. Wu, X. Hu, S. Li, and S. Hao, “A parallel k-means
clustering algorithm with mpi,” in Parallel Architectures, Algorithms
and Programming (PAAP), 2011 Fourth International Symposium on,
Dec 2011, pp. 60–64.

88 REC 2016

Índice de Autores

Alves, José Carlos .. 67

Barahimi, Amin .. 55

Barbosa, Ramiro ... 39, 45

Canas Ferreira, João ... 55

Canilho, José .. 81

Cardoso, João Manuel Paiva .. 19

Chaves, Ricardo ... 7, 13

Falcão, António .. 29

Fonseca, Paulo .. 39, 45

Holanda, José A. M. ... 19, 23

Ilic, Aleksandar .. 13

Joaquinito, Ricardo ... 63

Lopes Ferreira, Mário ... 55

Marques, Eduardo .. 19, 23

Martinez, Leandro A. ... 23

Neto, Horácio ... 73, 81

Pereira, João ... 29

Pires, Francisco .. 73

Prata, Diogo .. 13

Ribeiro, Rita ... 29

Santos, Tiago M. A. ... 29

Sarmento, Helena ... 63

Sundal, Magnus .. 7

Valente, José Francisco .. 67

Véstias, Mário .. 73, 81

Weinhardt, Markus ... 3

89

90

Notas

91

92

	REC 2016 Proceedings
	Table of Contents
	Preface
	Program Committee
	Openning Session
	Reconfigurable Computing - Architectures and High-Level Programming

	Session I: Security
	Efficient Hardware Implementation of the SHA-3 Hash Function
	Introduction
	The SHA-3 Algorithm
	State of the art
	Proposed implementation
	Results and evaluation
	Conclusions and future work

	Secure external memory on embedded devices

	Session II: Image Processing
	Uma Abordagem Multi-softcore Baseada em FPGA para o Algoritmo HOG
	A hardware/software codesign framework for vision-based ADAS
	I. Introduction
	II. Vision Frameworks
	III. System Design
	A. Developing Environment
	B. Simulation
	C. Overall System Architecture
	D. IP Construction

	IV. Pedestrian Detection
	A. Vector Image Stabilization
	B. Optical Flow
	C. Motion Detection Object
	D. Noise Removal
	E. Connected-component labeling
	F. Classifier
	G. Detection Results
	H. Hardware and Software Development Platform

	V. Future Works
	VI. Conclusion
	Acknowledgment
	References

	Image Fusion in FPGA Using Xilinx Design Tools

	Session III: Control
	Implementation and Tuning of PID Controllers Using FPAAs
	Control of a Temperature Peltier System with FPAAs

	Session IV: Signal Processing Applications
	FPGA-Based Dynamic Partial Reconfiguration application
in Cognitive Radio Baseband Processing Systems
	A Wireless Biosignal Measurement System using a
Zynq SoC
	A real-time underwater acoustic
direction finder in FPGA

	Session V: Multiprocessing
	An Implementation of MPI on FPGA for
Distributed Memory Multiprocessing
	FPGA implementation of a Multi-Processor for Cluster Analysis

	Author Index
	Notes

